New User Special Price Expires in

Let's log you in.

Sign in with Facebook


Don't have a StudySoup account? Create one here!


Create a StudySoup account

Be part of our community, it's free to join!

Sign up with Facebook


Create your account
By creating an account you agree to StudySoup's terms and conditions and privacy policy

Already have a StudySoup account? Login here

Bio-112 Chapter 3 Carbon and the molecular biology of life

by: mscrowell

Bio-112 Chapter 3 Carbon and the molecular biology of life Bio 112

Marketplace > Union University > Biology > Bio 112 > Bio 112 Chapter 3 Carbon and the molecular biology of life


Preview These Notes for FREE

Get a free preview of these Notes, just enter your email below.

Unlock Preview
Unlock Preview

Preview these materials now for free

Why put in your email? Get access to more of this material and other relevant free materials for your school

View Preview

About this Document

These notes contain chapter 3 of bio-112 and visuals from the textbook
principles of biology
Dr. Hannah Henson
Class Notes
25 ?




Popular in principles of biology

Popular in Biology

This 38 page Class Notes was uploaded by mscrowell on Monday September 12, 2016. The Class Notes belongs to Bio 112 at Union University taught by Dr. Hannah Henson in Fall 2016. Since its upload, it has received 5 views. For similar materials see principles of biology in Biology at Union University.


Reviews for Bio-112 Chapter 3 Carbon and the molecular biology of life


Report this Material


What is Karma?


Karma is the currency of StudySoup.

You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 09/12/16
Overview: Carbon Compounds and Life Aside from water, living organisms consist mostly of carbon­based  compounds A compound containing carbon is said to be an organic compound   Molecules of all living things fall into four main classes  Carbohydrates  Lipids  Proteins  Nucleic acids     3.1: Carbon atoms can form diverse molecules by bonding to other  atoms An atom’s electron configuration determines the kinds and number of bonds the atom will form with other atoms This is the source of carbon’s  versatility      The valences of carbon and its most frequent partners (hydrogen,  oxygen, and nitrogen) are the “building code” that governs the  architecture of living molecules   Molecular Diversity Arising from Variation in Carbon Skeletons  Carbon chains form the skeletons of most organic molecules Carbon chains vary in length and shape Hydrocarbons Hydrocarbons are organic molecules consisting of only carbon and  hydrogen Many organic molecules, such as fats, have hydrocarbon components Hydrocarbons can undergo reactions that release a large amount of  energy (combustion reaction)   Isomers Isomers are compounds that have the same number of atoms of the  same elements but different structures and properties Structural isomers differ in the covalent arrangement of their atoms Cis­trans isomers differ in arrangement around a double bond Enantiomers differ in spatial arrangement around a central carbon The number of possible isomers increases as carbon skeletons  increase in size Structural isomers In cis­trans isomers, carbons have covalent bonds to the same atoms,  but the atoms differ in their spatial arrangement due to inflexibility of double bonds Enantiomers are isomers that are mirror images of one another  Enantiomers are left­handed and right­handed versions of the same  molecule Usually only one isomer is biologically active   The Chemical Groups Most Important to Life Chemical groups can replace one or more of the hydrogens bonded to  the carbon skeleton of a hydrocarbon Functional groups are the chemical groups that affect molecular  function by being directly involved in chemical reactions Each functional group participates in chemical reactions in a  characteristic way         Structure determines function…               ATP: An Important Source of Energy for Cellular Processes   An organic phosphate molecule, adenosine triphosphate (ATP) has the  potential to react with water, releasing energy that can be used by the  cell       3.2: Macromolecules are polymers, built from monomers   A polymer is a long molecule consisting of many similar building  blocks  These small building­block molecules are called monomers Some molecules that serve as monomers also have other functions of  their own   The Synthesis and Breakdown of Polymers   Dehydration reaction: when two monomers bond together through the  loss of a water molecule   The Synthesis and Breakdown of Polymers Hydrolysis: Polymers are disassembled to monomers; essentially the  reverse of the dehydration reaction These processes are facilitated by enzymes   3.3: Carbohydrates serve as fuel and building material   Carbohydrates include sugars and the polymers of sugars  Monosaccharides: simplest carbohydrates   Polysaccharides: polymers composed of many sugar building  blocks  Sugars Monosaccharides have molecular formulas that  are usually multiples of CH O 2  Glucose (C H 6 )12s6the most common   Classified by the number of carbons in the carbon skeleton and the  placement of the  carbonyl group     A disaccharide is formed when a dehydration reaction joins two  monosaccharides  Other examples of disaccharides? Lactoseà present in milk Maltoseà used in making beer   Polysaccharides Polysaccharides, the polymers of sugars, have storage and structural  roles  The structure and function of a polysaccharide are determined by  its sugar monomers  and the positions of  glycosidic linkages  Ex.: Starch , a storage polysaccharide of plants, consists entirely of glucose monomers Plants store surplus starch as granules (producers) Most animals have enzymes that can hydrolyze plant starch (consumers) Animals store glycogen The polysaccharide cellulose is a major component of the tough wall of  plant cells Glycosidic linkages in cellulose differ from glycogen and starch  (difference is in two ring forms for glucose)   Structural Polysaccharides     Subtle Shape Changes are Important:   same molecules, different covalent bonds   We do not have enzymes capable of breaking down cellulose Structure can have a subtle effect on function, which may have a big  consequences.   Concept 3.4: Lipids are a diverse group of hydrophobic molecules   Lipids do not form true polymers  Have little or no affinity for waterà hydrophobic because they  consist mostly of hydrocarbonsàform nonpolar covalent bonds Ex.: fats, phospholipids, and steroids   Fats Fats are constructed from two types of smaller molecules: glycerol and  fatty acids Glycerol is a three­carbon alcohol with a hydroxyl group attached to each carbon A fatty acid consists of a carboxyl group attached to a long carbon  skeleton   Fats separate from water because water molecules hydrogen­bond to  each other and exclude the fats In a fat, three fatty acids are joined to glycerol by an ester linkage,  creating a triacylglycerol, or triglyceride Fatty acids vary in length (number of carbons) and in the number and  locations of double bonds Saturated fatty acids have the maximum number of hydrogen atoms  possible and no double bonds  Solid at room temp (e.g. butter) Unsaturated fatty acids have one or more double bonds  Liquid at room temp (e.g. oils)    Phospholipids   Phospholipid: two fatty acids and a phosphate group attached to  glycerol  2 fatty acid tails= hydrophobic Phosphate group and its attachments= hydrophilic head  Phospholipids are major constituents of cell membranes   Phospholipid bilayer    Steroids Steroids: lipids characterized by a carbon skeleton consisting of 4 fused  rings  Cholesterol, an important steroid, is a component in animal cell  membranes Although cholesterol is essential in animals, high levels in the blood  may contribute to atherosclerosis     Cholesterol: Synthesized in the liver and obtained from diet   3.5: Proteins include a diversity of structures, resulting in a wide  range of functions   Proteins account for more than 50% of the dry mass of most cells Protein functions include:  Accelerate chemical reactions  Defense  Storage  Transport  Cellular communication  Movement  Structural support                           Amino Acid Monomers   Amino acids are organic molecules with carboxyl and amino groups Amino acids differ in their properties due to differing side chains, called  R groups     Polypeptides are unbranched polymers built from the same set of 20  amino acids A protein is a biologically functional molecule that consists of one or  more polypeptides     Polypeptides (Amino Acid Polymers)   Amino acids are linked by peptide bonds A polypeptide is a polymer of amino acids Each polypeptide has a unique linear sequence of amino acids, with a  carboxyl end (C­terminus) and an amino end (N­terminus) 4 Levels of Protein Structure: A functional protein consists of one or more polypeptides precisely  twisted, folded, and coiled into a unique shape Proteins are very diverse, but share three superimposed levels of  structure called primary, secondary, and tertiary structure A fourth level, quaternary structure, arises when a protein consists of  two or more polypeptide chains Five Amino Acids     Hydrogen bonds hold secondary structure in place   Secondary structure, found in most proteins, consists of coils and folds  in the polypeptide chain Tertiary structure is determined by interactions among various side  chains (R  groups) tertiary structure = secondary + other folding   Bonds found in tertiary structure   Quaternary structure   Quaternary structure results from interactions between multiple  polypeptide chains   Sickle­Cell Disease: A Change in Primary Structure   A slight change in primary structure can affect a protein’s structure and  ability to function  Sickle­cell disease, an inherited blood disorder, results from a single  amino acid substitution in the protein hemoglobin       Hydrophobic acid What Determines Protein Structure?   Physical and chemical conditions can affect protein structure  Alterations in pH, salt concentration, temperature, or  environmental factors can cause a protein to unravel Denaturation: loss of a protein’s native structureàbiologically inactive   Molecules of all living things fall into four main classes  Carbohydrates  Lipids  Proteins  Nucleic acids   3.6: Nucleic acids store, transmit, and help express hereditary  information   The amino acid sequence of a polypeptide is programmed by a unit of  inheritance called a gene Genes are made of DNA, a nucleic acid made of monomers called  nucleotides     The Structure of Nucleic Acids   There are two types of nucleic acids  Deoxyribonucleic acid  DNA ( )  Ribonucleic acid  RNA( ) Nucleic acids are polymers called polynucleotides Each polynucleotide is made of monomers called nucleotides Each nucleotide consists of a nitrogenous base, a pentose sugar, and one  or more phosphate groups The portion of a nucleotide without the phosphate group is called a  nucleoside           Nucleotide Structures


Buy Material

Are you sure you want to buy this material for

25 Karma

Buy Material

BOOM! Enjoy Your Free Notes!

We've added these Notes to your profile, click here to view them now.


You're already Subscribed!

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

Why people love StudySoup

Bentley McCaw University of Florida

"I was shooting for a perfect 4.0 GPA this semester. Having StudySoup as a study aid was critical to helping me achieve my goal...and I nailed it!"

Anthony Lee UC Santa Barbara

"I bought an awesome study guide, which helped me get an A in my Math 34B class this quarter!"

Jim McGreen Ohio University

"Knowing I can count on the Elite Notetaker in my class allows me to focus on what the professor is saying instead of just scribbling notes the whole time and falling behind."


"Their 'Elite Notetakers' are making over $1,200/month in sales by creating high quality content that helps their classmates in a time of need."

Become an Elite Notetaker and start selling your notes online!

Refund Policy


All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email


StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here:

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to

Satisfaction Guarantee: If you’re not satisfied with your subscription, you can contact us for further help. Contact must be made within 3 business days of your subscription purchase and your refund request will be subject for review.

Please Note: Refunds can never be provided more than 30 days after the initial purchase date regardless of your activity on the site.