New User Special Price Expires in

Let's log you in.

Sign in with Facebook


Don't have a StudySoup account? Create one here!


Create a StudySoup account

Be part of our community, it's free to join!

Sign up with Facebook


Create your account
By creating an account you agree to StudySoup's terms and conditions and privacy policy

Already have a StudySoup account? Login here

Lecture 3 Notes

by: Malissa Notetaker
Malissa Notetaker

Preview These Notes for FREE

Get a free preview of these Notes, just enter your email below.

Unlock Preview
Unlock Preview

Preview these materials now for free

Why put in your email? Get access to more of this material and other relevant free materials for your school

View Preview

About this Document

Lecture 3, Week 2
Cell & Molecular Neuroscience
Dr. Jason Meyer
Class Notes
25 ?




Popular in Cell & Molecular Neuroscience

Popular in Neuroscience

This 5 page Class Notes was uploaded by Malissa Notetaker on Tuesday September 13, 2016. The Class Notes belongs to Biol-K416 at Indiana University Purdue University - Indianapolis taught by Dr. Jason Meyer in Fall 2016. Since its upload, it has received 4 views. For similar materials see Cell & Molecular Neuroscience in Neuroscience at Indiana University Purdue University - Indianapolis.

Similar to Biol-K416 at IUPUI

Popular in Neuroscience


Reviews for Lecture 3 Notes


Report this Material


What is Karma?


Karma is the currency of StudySoup.

You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 09/13/16
Cellular and Molecular Neuroscience  Lecture 3­ 8/29/16 Topic: Membrane Structure and Transport ● Cell plasma membrane structure: ○ Proteins  ○ Lipids ■ Should NOT see tails. Why? ● Tails are hydrophobic ● Plasma membrane is a highly fluid structure ○ Why is this important? ■ For endo/exocytosis ■ Protein movement on membrane ■ Cell division ■ Growth and shrinkage ■ Could break if too rigid  ■ Able to reform itself in response to different  stimuli ■ Able to withstand a lot to protect insides ● Phospholipides­ most abundant lipids in neuronal membranes ○ Fluidity determined by length of tails as well as presence of cis  bonds ■ Cis bonds give curvature ○ Amphiphilic­ contain both hydrophobic and hydrophilic regions ■ Hydrophobic­ “water­hating” ■ Hydrophilic­ “water­tolerating” ○ Phosphoglycerides ■ 3­carbon glycerol backbone ■ Most common phospholipids ● Organization of lipids ○ Lipid micelle ■ Arranged in spherical fashion ○ Lipid bilayer ○ Hydrophobic tails control the orientation due to “hatred” ● How is the lipid bilayer typically arranged? ○ Planar phospholipid bilayer w/ edges exposed to water is  energetically unfavorable ○ Sealed compartment formed by phospholipid bilayer is  energetically favorable ■ Called liposome ○ What is the difference between liposome and micelle? ■ Liposome has bilayer, micelle does not ○ Liposomes can be used to deliver stuff to cell ■ Many proteins ○ What is the difference between a liposome and a vesicle? ■ Liposome­ just lipids ■ Vesicles­ more than lipids, proteins ● Mobility of Phospholipid Molecules ○ Types of movement: ■ Lateral diffusion ■ Flexion ■ Rotation ■ Flip flop ● Rarely occurs b/c tail regions are  exposed­ only happens when enzymes are in place to protect tails ● Signaling Functions of Inositol Phospholipids ○ Inositol phospholipids­ present in small quantities, but have  important functions in guiding membrane traffic and in cell signaling ● Types of Membrane Proteins ○ Span across, pass through many times, form pores, one side, link  together to form complex ○ Helps determine function of proteins ● Diffusion of proteins in plasma membrane ○ Fuse together two different cell lines ■ Ex: mouse & human ○ Fused cell is now a heterocaryon ○ Use antibodies against mouse membrane protein labeled with  fluorescein, antibodies against human membrane protein labeled with rhodamine ■ Initially antibodies will be split­ half on one side,  half on the other side ■ A 7fter incubation (37 C) ~ 40 min, the proteins  will blend ○ Purpose is to show that the proteins are mobile ● Photobleaching experiments to confirm lateral diffusion of membrane proteins ○ FRAP­ Fluorescence Recovery After Photobleaching ■ Use laser beam to bleach an area ■ Use the time it take the spot’s color to recover to  tell how mobile the proteins are in the membrane ○ FLIP­ Fluorescence Loss In Photobleaching ■ Use laser beam to bleach an area ■ Continue bleaching area, use the time it takes for  the whole cell to lose color to see how mobile the proteins are in the  membrane ● Not ALL proteins are mobile, some could be anchored to the cytoskeleton ○ Receptors in dendrites to receive signals ● Confining Proteins to Specific Domains ○ Epithelial cells are meant to serve as a protective barrier ■ Certain proteins may help by fusing the cells  together­ are supposed to be in a specific locations  ○ Membrane Support ■ What kinds of substances would need to be  transported across the membrane? ● MAP2­ found in cell body and  dendrites ● Neurofilament­ found in axons ○ There were no  overlap of the colors, showing that the two are separate ● Conductance across neuronal membranes ○ Lipids form the bilayer ○ Na cannot get in ■ Needs Na channel ○ Oxygen can get right in  ○ Water cannot get in ■ Needs aquaporin ○ Glucose cannot get in ■ Needs glucose transporters ○ Na can come out ■ Needs Na/K pump ● Electrochemical gradient ○ Electrochemical gradient with no membrane potential, some will  move across gradient depending on concentration ○ Electrochemical gradient with membrane potential negative inside  (positive neurons outside), will try and push the + ions into the cell because less  concentration and negative charge ○ Electrochemical gradient with membrane potential positive inside,  will not want to come inside much because the charge is positive on the inside ○ The Electrochemical Gradient is dependent on both the  membrane potential AND the concentration gradient ● Two main classes of membrane transport proteins ○ Transporters­ binds solute and undergoes conformational change to transfer solute across membrane ■ Imbedded in membrane ■ Slower than channels ● Only allows one or two at a time ○ Channels­ form aqueous pores that extend across bilayer. When  open, they allow specific solutes to pass through ■ Specificity conferred to channels by using the size  and charge of individual ions ● Electrochemical gradient decides  what goes through ■ Faster that transporters, can just rush in ● Passive vs. Active Transport ○ Neither­ simple molecules (like oxygen) can use simple diffusion ○ Passive Transport­ channel­mediated or transporter­mediated that  does NOT require energy ○ Active Transport­ transporter that REQUIRES energy ■ Needs energy bc going across gradient­ high conc.  to low conc. ● Active Membrane Transport ○ Uniport­ can assist in moving one molecule across gradient ○ Symport­ can move two molecules across gradient in the same  direction ○ Antiport­ can move two molecules across gradient in opposite  directions ○ Coupled transporters­ couple uphill transport of one solute across  the membrane to the downhill transport of another ■ Uses energy provided by one to move another even  though against gradient ○ ATP­driven pumps­ couple uphill transport to the hydrolysis of  ATP ○ Light­driven pumps­ couple uphill transport to an input of energy  from light ● Na+/K+ Pump ○ An active transporter ○ Is most influential at resting membrane potential, why can hold @  ­70, always exchanging 3 Na+ for 2 K+  


Buy Material

Are you sure you want to buy this material for

25 Karma

Buy Material

BOOM! Enjoy Your Free Notes!

We've added these Notes to your profile, click here to view them now.


You're already Subscribed!

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

Why people love StudySoup

Jim McGreen Ohio University

"Knowing I can count on the Elite Notetaker in my class allows me to focus on what the professor is saying instead of just scribbling notes the whole time and falling behind."

Anthony Lee UC Santa Barbara

"I bought an awesome study guide, which helped me get an A in my Math 34B class this quarter!"

Steve Martinelli UC Los Angeles

"There's no way I would have passed my Organic Chemistry class this semester without the notes and study guides I got from StudySoup."


"Their 'Elite Notetakers' are making over $1,200/month in sales by creating high quality content that helps their classmates in a time of need."

Become an Elite Notetaker and start selling your notes online!

Refund Policy


All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email


StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here:

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to

Satisfaction Guarantee: If you’re not satisfied with your subscription, you can contact us for further help. Contact must be made within 3 business days of your subscription purchase and your refund request will be subject for review.

Please Note: Refunds can never be provided more than 30 days after the initial purchase date regardless of your activity on the site.