New User Special Price Expires in

Let's log you in.

Sign in with Facebook


Don't have a StudySoup account? Create one here!


Create a StudySoup account

Be part of our community, it's free to join!

Sign up with Facebook


Create your account
By creating an account you agree to StudySoup's terms and conditions and privacy policy

Already have a StudySoup account? Login here

Chapter 3 Notes

by: Kami Mabe

Chapter 3 Notes Bio 2110k

Kami Mabe
GPA 3.54

Preview These Notes for FREE

Get a free preview of these Notes, just enter your email below.

Unlock Preview
Unlock Preview

Preview these materials now for free

Why put in your email? Get access to more of this material and other relevant free materials for your school

View Preview

About this Document

These notes cover material in Chapter 3
Human anatomy & physiology
Class Notes
Biology, anatomy, cells, organic, Chemistry
25 ?




Popular in Human anatomy & physiology

Popular in Biology

This 8 page Class Notes was uploaded by Kami Mabe on Wednesday September 14, 2016. The Class Notes belongs to Bio 2110k at Georgia State University taught by Borek in Spring 2016. Since its upload, it has received 5 views. For similar materials see Human anatomy & physiology in Biology at Georgia State University.


Reviews for Chapter 3 Notes


Report this Material


What is Karma?


Karma is the currency of StudySoup.

You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 09/14/16
Week 3 Notes   Energy  Capacity to do work  Invisible except for influence on matter  2 states  Potential Energy   Stored energy   Energy of position  Plasma Membrane has potential energy when the concentration gradient across  plasma membrane  Electrons can move from a higher­shell to lower energy shell with potential  energy as long as it is converted to kinetic energy   Chemical Energy   Energy stored in a molecule’s chemical bonds  Used for movement, molecule synthesis, establish concentration gradient   Present in all chemical bonds   Molecules function in energy storage  Triglycerides  Long­term energy storage in adipose tissue  Glucose  Glycogen stores in liver and muscle  ATP  Produced continuously and used immediately  Protein  Fuel molecule    Kinetic Energy   Energy of motion  Plasma membrane has kinetic energy when Sodium ion moves from area of high  concentration to low concentration   Electric Energy  Movement of charged molecules    Mechanical Energy   Objects in motion  Sound Energy   Molecule compression caused by vibrating object  Radiant Energy  Energy of electromagnetic waves  Wavelength and frequency differ  Higher frequencies have greater radiant energy   Penetrate body and mutate DNA when it is formed by frequencies higher  than visible light  Heat   Kinetic energy of random motion  Not available for work  Measured as temperature   Energy can change forms  Thermodynamics  Study of energy transformations   First Law  Energy is neither created nor destroyed, but it can change in form  Second Law  Some energy is lost to heat, when energy is transformed  Chemical Equations  Chemical Reactions   Occur when chemical bonds in existing molecular structures are broken  New bonds form  Metabolism   All chemical reactions in the body   Components  Reactants   Substances present before the reaction  Left side of equation   Products   Substance that is formed from reaction  Right side of equation   A + B ­> C  Catabolism   Decomposition reactions  Large molecules break down into smaller molecules  Anabolism   Synthesis reactions   Small molecules combine to form larger ones  Exchange   Groups exchanged between two chemical structures  Oxidation­Reduction Reaction  Electron moved  Structure that loses electron is oxidized   Structure that gains electron is reduced  NAD+  Modified dinucleotide containing nicotinamide   ATP synthesis   Energy­rich molecule is oxidized   NAD+ reduced  Gains hydrogen ion and two electrons   Exergonic Reaction   Energy released and decreases in potential energy   Endergonic Reaction   Energy supplied with increase in potential energy   ATP cycling   Formation and breakdown of ATP  Formation  Energy released from exergonic reaction  Fuel molecules from food oxidized   Energy transferred to ADP and free phosphate  Oxidized   Released energy used for energy requiring processes   Irreversible Reaction   Net loss of reactants and net gain in products over time  Reversible Reactions   No net change in concentration of reactants and products  Remains in equilibrium if left alone   Increase in either reactants or decrease in products drives equation to the right  Products are formed until equilibrium  Decrease in reactants or increase  in products drives reaction to the left  Reactants are formed until equilibrium   Reaction Rate  Measure of how quickly a chemical reaction takes place  Activation Energy   Energy required to break bonds  Enzymes   Accelerate chemical activities by lowering activation energy   Increase rate of product formation   Chemical Reactions  If no enzyme is present, it’s an uncatalyzed reaction  If enzyme is present, it’s a catalyzed reaction   Most enzymes are Globular proteins   Active Site   Region of enzyme accommodating the reaction substrate   Forms enzyme­substrate complex  Specificity of shape   Permits a single substrate to bind   Catalyzes one specific reaction   Structure and Location   Produced from normal protein synthesis within cells   Some remain in cell   Some become embedded in plasma membrane   Help digest lactose  Some are secreted from cell  Released from pancreas for starch digestion  Catalysis   Substrate enters active site   Enzyme substrate complex  Enzyme may change shape  Induced fit  The change in shape stresses chemical bonds  New bonds may form   Products release  Cofactors   Molecules or ions required for normal enzyme function   Particular enzyme   Nonprotein organic or inorganic structure   Organic cofactors called cofactors   Inorganic cofactors attach to enzyme   Six major classes   Oxidoreductase  Transfers electrons  Transferase  Transfers a functional group  Hydrolase   Splits a chemical bond   Isomerase   Converts one isomer  Ligase   Bonds two molecules   Lyase  Splits a chemical bond in absence of water   Dehydrogenase subclass that moves hydrogen between molecules   Kinase subclass that transfers a phosphate functional group  Rate of Enzyme reaction  May be increased   Enzyme concentration  Substrate concentration   Increase only to the point of saturation   Saturation: So much substrate is present that all enzyme molecules are  engaged in reactions   Temperature   3D shape of enzyme is dependent on the temperature  Optimal temperature is the most efficient temperature for function   95­104 degrees farenheight   If temperature increases too much, protein denaturation takes place and  function is lost   pH  Between 6 and 8 for optimal pH  Changes in the H+ disrupt electrostatic interactions   Enzyme loses shape and denatures is pH is above optimal pH  Inhibitors  Bind to enzyme   Prevent enzymatic catalysis   Prevents overproduction of product   Competitive   Binds to the active site of enzyme   Compete for active site  More substrate  Less likely to occur   Less substrate   More likely to occur    Noncompetitive   Do not resemble substrate  Bind to a site other than the active site   Induces conformational change to enzymes and active site  Concentration has no influence   Metabolic pathway  Series of enzymes  The product of one enzyme becomes the substrate of the next   Product acts as an allosteric inhibitor   Turns enzyme off early   More product accumulates means less products form  Less products accumulate means more products form  Multienzyme Complex  Group of attached enzymes   Works in a sequence of reactions  Advantages   Substrate is less likely to diffuse away into different biochemical pathways  Single complex can be regulated rather than individual enzymes   Phosphorylation   Addition of phosphate   Protein kinase   Turns enzymes on and off  Dephosphorylation   Removal of phosphate group  Phosphatases   Turns enzymes off and on   Certain prescriptions increase or decrease enzyme activity   Lactose Intolerance   Deficiency in lactase   Breaks bonds in lactose into glucose and galactose   Treated with lactase enzymes or no milk   Cellular Respiration   Metabolic pathway   Organic molecules oxidized and disassembled by enzymes   Energy released in chemical bonds   Oxygen REQUIRED  Glucose Oxidation   Breakdown of glucose with energy release  Carbon dioxide and carbon formed   Energy from broken bonds are captured to attach phosphate group to ADP   Transferred directly   Direct synthesis of ATP called substrate­leve; phosphorylation   Transferred indirectly   Energy released to coenzymes  Oxidative Phosphorylation   Energy transferred to form ATP  Enzymes for glucose oxidation   Cytososl   Semifluid cell contents  Mitochondria   Small organelles in cell   Stages  Glycolysis   Anaerobic cellular respiration (can occur without oxygen)  Occurs in cytosol  Broken down into 2 pyruvate molecules  Net production of two ATP and NADH  Ten Enzymes required   Pyruvate  Sufficient oxygen, it enters mitochondria   Insufficient oxygen,  it is converted to lactate   Aerobic Cellular Respiration Stages   Require oxygen   Occur in mitochondria   Intermediate Stage   Catalyzed by pyruvate dehydrogenase   Pyruvate and Coenzyme A combine to form acetyl Coenzyme A  Decarboxylation  Carboxyl group released from pyruvate as CO2  Energy is released as NADH   Acetyl Coenzyme A enters citric acid cycle   2 NADH produced for every glucose  Citric Acid Cycle   9 enzymes in mitochondrial matrix   Acetyl CoA converted to 2 CO2 molecules  CoA released   ATP, 3 NADH, and FADH2 formed in one turn   Electron Transport Chain   Transfer of electrons from NADH and FADH2   Energy released used to make ATP   Involves structures located in inner membrane of mitochondria   Electron carriers, H+ pumps, ATP synthetase enzymes   Proteins catch electrons from NADH and FADH2  Also act as H+ pump   Transports H+ from matrix to outer membrane compartment   ATP synthetase allow for passage of H+ from outer compartment  back into matrix   Flow of H+ harnessed to bond P1 to ADP to ATP   Steps   Electrons transferred from coenzymes to O2   Coenzyme releases hydrogen and oxidized  Electrons passed through electron carriers to O2   O2 combines with 4 electrons and 4 H+ to produce 2 molecules of water   Proton gradient made  Potential energy converted to kinetic energy   Kinetic energy harnessed by H+ pumps   Move H+ to outer compartments   Proton gradient harnessed to form ATP  H+ moves down concentration gradient from outer  compartment into matrix   Kinetic energy of falling H+ harnessed by ATP synthetase   New bond between ADP and P forming ATP   Oxidative Phosphorylation  Oxygen as final acceptor  ATP formed from phosphorylation   Distinguish from substrate level phosphorylation   Forms ATP from energy directly released form substrate   Occurs during glycolysis and citric acid cycle 


Buy Material

Are you sure you want to buy this material for

25 Karma

Buy Material

BOOM! Enjoy Your Free Notes!

We've added these Notes to your profile, click here to view them now.


You're already Subscribed!

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

Why people love StudySoup

Steve Martinelli UC Los Angeles

"There's no way I would have passed my Organic Chemistry class this semester without the notes and study guides I got from StudySoup."

Allison Fischer University of Alabama

"I signed up to be an Elite Notetaker with 2 of my sorority sisters this semester. We just posted our notes weekly and were each making over $600 per month. I LOVE StudySoup!"

Steve Martinelli UC Los Angeles

"There's no way I would have passed my Organic Chemistry class this semester without the notes and study guides I got from StudySoup."


"Their 'Elite Notetakers' are making over $1,200/month in sales by creating high quality content that helps their classmates in a time of need."

Become an Elite Notetaker and start selling your notes online!

Refund Policy


All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email


StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here:

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to

Satisfaction Guarantee: If you’re not satisfied with your subscription, you can contact us for further help. Contact must be made within 3 business days of your subscription purchase and your refund request will be subject for review.

Please Note: Refunds can never be provided more than 30 days after the initial purchase date regardless of your activity on the site.