New User Special Price Expires in

Let's log you in.

Sign in with Facebook


Don't have a StudySoup account? Create one here!


Create a StudySoup account

Be part of our community, it's free to join!

Sign up with Facebook


Create your account
By creating an account you agree to StudySoup's terms and conditions and privacy policy

Already have a StudySoup account? Login here

GPH 212, Week 4 Notres

by: Sheridan Smede

GPH 212, Week 4 Notres GPH 212

Sheridan Smede
GPA 3.78

Preview These Notes for FREE

Get a free preview of these Notes, just enter your email below.

Unlock Preview
Unlock Preview

Preview these materials now for free

Why put in your email? Get access to more of this material and other relevant free materials for your school

View Preview

About this Document

These notes cover the Monday and Wednesday lectures from week 4 of class.
Introduction to Meteorology
Matei Georgescu
Class Notes
Meteorology, gph, gph212, gph214, Meteorology notes, Intro to Meteorology
25 ?




Popular in Introduction to Meteorology

Popular in Physical Geography

This 8 page Class Notes was uploaded by Sheridan Smede on Thursday September 15, 2016. The Class Notes belongs to GPH 212 at Arizona State University taught by Matei Georgescu in Fall 2016. Since its upload, it has received 9 views. For similar materials see Introduction to Meteorology in Physical Geography at Arizona State University.


Reviews for GPH 212, Week 4 Notres


Report this Material


What is Karma?


Karma is the currency of StudySoup.

You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 09/15/16
Important Dates  ● Exam 1 ­ September 21st  ● Friday September 16th ­ forecasting contest  ○ Find daytime max and min for KSAT location (San Antonio, TX)  ○ ASU vs. UTSA  Temperature Scales  ● Gabriel Fahrenheit  ○ 212 degrees F = ​boiling point  ○ ­32 degrees F = ​freezing point  ● Anders Celsius  ○ 100 degrees C = ​boiling point  ○ 0 degrees C = ​ reezing point  ○ Celsius > Fahrenheit  ○ F only used in America  ● F = 9/5 C +32  ● C = 5/9(F­32)  ● To overcome shortcoming of negative values, the Kelvin scale was introduced  ● Didn’t make sense that temperature could have a negative value  ○ K = C +273.15  ○ 373.15 K = ​boiling point  ○ 273.15 K = ​freezing point  ○ An increment of Kelvin change is identical to an increment of Celsius  change  ● Absolute zero  ○ ­460 F  ○ ­273 C  ○ 0 K  ● Celsius degree is 1.8 more than Fahrenheit degree  ● 0 Kelvin = all motions stop (absolute zero)  ● Adding 10 degrees Celsius = adding 18 degrees Fahrenheit  ○ 104 F = 40 C  ○ 86 F = 30 C  Meteorological History  ● When were these scales developed?  ● Galileo Galilei (1593) ­ first thermometer prototype (thermoscope)  ○ Lacked a numerical value to indicate temperature  ● Evangelista Torricelli (1643) invented device to measure air pressure (barometer)  ● Joseph Louis Gay­Lussac (French chemist/physicist)  ○ Gay­Lussac Law advanced our understanding of gases and atoms  ○ Traveled several thousand feet in a hot air balloon; collected air to analyze  ○ Went on a solo flight 40k feet in the air  ○ Expansion and contraction of our atmosphere  Gay­Lussac Law  ● When you add heat, air expands  ○ After air expands, pressure is lost  ○ Air molecules will begin to leave vessel they are in  ○ Eventually, vessel will reach equilibrium  ○ Higher pressure = outside the vessel  ○ Lower pressure = inside the vessel, compared to outside the vessel  ● Air moves in response to pressure imbalances  ● Air will move from high to low pressures  History Cont.  ● Joseph Henry helped purchase meteorological instrumentation to establish an  observational network  ○ “Programme of Organization”  ○ Goal was to solve problem of American storms  ○ Around the same time, telegraph was invented  Is it possible a librarian will discover a temperature record going back to  the middle ages?  ● No, they did not have a way to measure temperature back then  Energy  ● Defined as anything that has the ability to do work  ○ Agent capable of setting an object in motion  ○ Agent capable of warming a teapot  ○ SI unit of energy ­ Joule [kg*m^2/s^2]  ● Simplest of activities require a transfer of energy (for example, looking at and  writing these words)  ● One two billionth of the energy emitted by the sun is transferred to earth as  electromagnetic radiation  ○ Some ER is absorbed by atmosphere and some by the earth’s surface  ● Kinds of energy  ○ Kinetic  ■ Energy in use or in motion  ■ Ex: light, radiation, heat, motion, electrical power  ○ Potential   ■ Energy in reserve or stored  ■ Ex: reservoir behind dam, high pressure  ■ Chemical potential energy  ● Ex: battery, gasoline, explosives, firewood, food  ● Food  ○ Process of metabolism is used to convert potential  energy stored within food to kinetic energy  ● Gravitational potential energy  ○ Object’s placement  ○ A falling raindrop has both kinetic and potential energy  Model output statistics (MOS)  ● A technique that interprets numerical weather prediction (NWP) output to  produce site­specific guidance (weather information the public depends on for  daily activities)  ○ 9 million regression equations  ○ 75 million forecasts per day  ○ 1200 products sent daily  ○ 400k lines of cost (mostly FORTRAN)  ○ Millions of hours of supercomputer time  ● MOS involves historically tracking how a forecast model performs compared to  real observed records  ● Used to improve forecast accuracy  ● Cooling leads to contraction  ● Heating leads to expansion  ● Add value to NWP model to quantify ​uncertainty  MOS  ● Advantages:  ○ Reliable probabilities  ○ Removal of some systematic model bias  ○ Specific element and site forecasts  ● Disadvantages:  ○ Changing NWP models (ex: numerical models themselves are always  modified)  ○ Availability and quality of observations  MOS­ What is needed?  ● Historical weather output  ● Observations  ○ Compare data to what actually happened  Reading a MOS message (interpretation goes from top to bottom of message)  ● Starts with identifier of location  ○ Always 4 letters, starts with K (ex: KDEN, KSEA, KPHX)  ● GFS ­ a numerical weather prediction model  ● MOS guidance ­ the title  ○ Guidance = prediction  ○ Because meteorology is an inexact science  ● Valid date for forecast  ● 1200 UTC ­ coordination of time globally  ○ Greenwich ­ where we base time globally  ● DT ­ the date  ○ A short term prediction, not more than four days  ● Values by hour  ○ Every three hours  ○ Some metrics provided every 6 hours  ○ Once you reach 00 (midnight) the day changes  ● N/X  ○ Nighttime minimum temperature  ○ Daytime maximum temperature  ● TMP ­ temperature at designated hour  ● DPT ­ dew point at designated hour  ​ ○ Dew point = the temperature current temp needs to d saturation to occur  ○ Dew point cannot be higher than actual temperature  ● CLD ­ cloud conditions; coverage  ○ OV ­ overcast  ○ BK ­ broken  ○ Clear  ○ SC ­ scattered clouds  ● WDR ­ wind direction (in tens of degrees)  ○ Ex: 19 = 190 degrees  ○ 180 degrees = wind is coming from the south  ○ 90 degrees = coming from the east  ○ 270 degrees = coming from the west  ● WSP ­ wind speed, given in units of knots  ● P06 ­ probability of precipitation for 6 hours previous  ● P12 ­ probability of precipitation for 12 hours previous  Characteristics of Radiation  ● Intensity and wavelengths of emitted radiation   ○ Categorized into a few individual “bands” along the ​electromagnetic  spectrum  ● Electromagnetic radiation  ○ Visible light (VIS) is a narrow band bound by infrared (IR) and ultraviolet  (UV)  ○ X­ray radiation has very short wavelengths and can penetrate soft tissues  ○ Wavelengths typically specified in ​micrometers  ○ From short to long wavelengths:  ■ Gamma rays > x­rays > ultraviolet > visible light > Infrared > Radio  waves  ■ Longer wavelengths = less harmless to humans  ■ Wave lense ​­ distance between peaks of waves  ● All matter radiates energy over a wide range of electromagnetic wavelengths  ● Physical laws defining amount and wavelength of emitted energy apply to  hypothetical perfect emitters of radiation known as ​blackbodies  ○ The earth and sun are similar to blackbodies  ○ Absorbs and emits maximum amounts of radiation  ● Energy radiated by substances occurs over a wide range of wavelengths  ● Shape of curve of intensity of emitted radiation is similar  ● Peak of the curve (for earth) corresponds to a longer wavelength  Stefan­Boltzmann Law  ● Single most important factor that determines how much energy a blackbody  radiates is its ​temperature   ● The intensity of radiation depends on the temperature raised to the fourth power  ○ Stefan­Boltzmann law:  ● Surface of sun is 5800 K (5500 C or 9900 F) and emits about 64 million watts per  square meter  ● Surface of earth is 288K  ● Stefan­Boltzmann constant (5.67E­8Wm^­2K^­4)  Emissivity  ● Percentage of energy radiated by a substance relative to that of a blackbody  ● Radiation intensity in real objects (not blackbodies) is a function of both  emissivity and temperature  ● The graybody version of Stefan­Boltzmann law  Shortwave/Longwave radiation   ● For any radiating body, the wavelength of peak emission is given by Wien’s law  ○ Lambda (Greek) used as constant 2898/T  ● Warmer objects radiate energy at shorter wavelengths than do cooler bodies  ● Wavelengths less than 4 micrometers are considered shortwave radiation  ● Wavelengths more than 4 micrometers are considered longwave radiation  ● Warmer bodies radiate more energy than do cooler bodies at all wavelengths  Questions for upcoming exam:  ● What are the two measures of pressure?  ○   ● What is the Wien’s law equation?  ○ Lambda = 2898/T  ● T/F ­ the earth is a perfect blackbody?  ○ False  ● Where does most weather occur in the atmosphere?  ● What is the most common gas in our atmosphere?  ● Where is the ozone located in our atmosphere?       


Buy Material

Are you sure you want to buy this material for

25 Karma

Buy Material

BOOM! Enjoy Your Free Notes!

We've added these Notes to your profile, click here to view them now.


You're already Subscribed!

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

Why people love StudySoup

Steve Martinelli UC Los Angeles

"There's no way I would have passed my Organic Chemistry class this semester without the notes and study guides I got from StudySoup."

Jennifer McGill UCSF Med School

"Selling my MCAT study guides and notes has been a great source of side revenue while I'm in school. Some months I'm making over $500! Plus, it makes me happy knowing that I'm helping future med students with their MCAT."

Jim McGreen Ohio University

"Knowing I can count on the Elite Notetaker in my class allows me to focus on what the professor is saying instead of just scribbling notes the whole time and falling behind."

Parker Thompson 500 Startups

"It's a great way for students to improve their educational experience and it seemed like a product that everybody wants, so all the people participating are winning."

Become an Elite Notetaker and start selling your notes online!

Refund Policy


All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email


StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here:

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to

Satisfaction Guarantee: If you’re not satisfied with your subscription, you can contact us for further help. Contact must be made within 3 business days of your subscription purchase and your refund request will be subject for review.

Please Note: Refunds can never be provided more than 30 days after the initial purchase date regardless of your activity on the site.