New User Special Price Expires in

Let's log you in.

Sign in with Facebook


Don't have a StudySoup account? Create one here!


Create a StudySoup account

Be part of our community, it's free to join!

Sign up with Facebook


Create your account
By creating an account you agree to StudySoup's terms and conditions and privacy policy

Already have a StudySoup account? Login here

Psyc 6 Week 2

by: Sabrina Straus

Psyc 6 Week 2 PSYC 6

Sabrina Straus

Preview These Notes for FREE

Get a free preview of these Notes, just enter your email below.

Unlock Preview
Unlock Preview

Preview these materials now for free

Why put in your email? Get access to more of this material and other relevant free materials for your school

View Preview

About this Document

PSYCHOPHARMACOLOGY class notes and chapter notes 9/23/16
Introduction to Neuroscience
Catherine Cramer
Class Notes
Introduction, neuroscience, PSYC
25 ?




Popular in Introduction to Neuroscience

Popular in Psychology (PSYC)

This 5 page Class Notes was uploaded by Sabrina Straus on Friday September 23, 2016. The Class Notes belongs to PSYC 6 at Dartmouth College taught by Catherine Cramer in Fall 2016. Since its upload, it has received 5 views. For similar materials see Introduction to Neuroscience in Psychology (PSYC) at Dartmouth College.


Reviews for Psyc 6 Week 2


Report this Material


What is Karma?


Karma is the currency of StudySoup.

You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 09/23/16
6. 09­23­16  Intro to Neuro Class Notes  PSYCHOPHARMACOLOGY   I.   Exogenous substances that affect endogenous processes    Agonists­stimulate a naturally occurring process by mimicking a neurotransmitter  Ex: LSD is agonist for serotonin    Antagonists (competitive and noncompetitive)­oppose  Ex: curare to nicotinic receptor ­> can’t move muscles  Competitive and noncompetitive  II.  A dozen ways to mess with your neurons    1.  Affect synthesis of NT  Ex: deactivates enzyme in synthesis    2.  Block conduction of AP via channel block  Ex: tetrodotoxin by messing with voltage­gated channels    3.  Block axonal transport of NT   Ex: colchicine­ used to treat gout    4.  Modulate release of NT [e.g., black widow spider venom]  Ex: block calcium channels or snares­> less release of neurotransmitters    5.  Modulate storage of NT [e.g., reserpine]    6.  Modulate pre­synaptic receptors  Ex: block autoreceptors negative feedback ­> caffeine is a stimulator     7.  Modulate re­uptake   Ex: Prozac~ specific for serotonin    8.  Modulate breakdown of NT in cleft   Ex: reduce amt. Of neurotransmitter to be recycled by blocking enzymes} cholinesterase  inhibitors  Post­synaptic membrane    9.  Modulate # of postsynaptic receptors   Ex: more ­> more effective [e.g., alcohol up­regulation of Gaba receptor (more inhibitory  post­synaptic potentials]    10.  Block receptors [e.g., curare]    11.  Activate receptors [e.g., nicotine­agonists]    12.  Modulate second messengers [e.g., lithium­bipolar disorder by blocking it]  III.  Effects of some psychoactive drugs    A.  Stimulants (e.g.,  amphetamine (agonistic dopamine), cocaine+Ritalin (blocks reuptake of  dopamine))    B.  Opiates (stimulates endorphin) (e.g., heroin, morphine)} relaxation    C.  Cannabinoids  (marijuana­retrograde)    D.  Hallucinogens (e.g., LSD­stimulates serotonin)    E.  Sedatives (e.g., barbituates, alcohol)  IV.  Some consequences of repeated exposure to psychoactive drugs    1.  Tolerance and withdrawal to opiates­> change dosage    2.  Up­ and down­regulation of receptors  Chapter Notes  Chapter 6:Neurotransmitter Systems  ­3 major neurotransmitters: amino acids, amines, and peptides  ­Studying neurotransmitter systems  >Neurotransmitter:  1. The molecule must be synthesized and stored in the presynaptic neuron.  2. The molecule must be released by the presynaptic axon terminal upon  stimulation.  3. The molecule, when experimentally applied, must produce a response  in the postsynaptic cell that mimics the response produced by the  release of neurotransmitter from the presynaptic neuron.    ● Localization of Transmitters and transmitter­synthesizing enzymes: prove that located in  and synthesized by neurons  ○ Immunocytochemistry: anatomically localizes particular molecules to particular  cells  ■ Inject neurotransmitter in blood­>antibodies form and bind to antigen  (transmitter candidate)­>color antibodies and stick in brain cells to  distinguish dif. cells  ○ In situ hybridization: useful for confirming that a cell synthesizes a particular  protein or peptide  ■ Create complementary strand of mRNA (probe~chemically labeled) ­>  bonds (hybridization) ­>   ● make them radioactive and stick on film} autoradiography  ● Or use fluorescence  ● Transmitter release  ○ Brain slices in K+ and Ca2+ solution to stimulate depolarization  ○ Hard to see if released from terminal  ● Synaptic Mimicry: microiontophoresis  ○ Apply drug by passing electrical current and stimulate axon­> record Vm at  neuron  ● Receptors: no two neurotransmitters bind to the same receptor but one neurotransmitter  can bind to many different receptors  ○ Receptor subtype: Each of the different receptors a neurotransmitter binds to  ○ Studies  ■ Neuropharmacological analysis: different receptor subtypes can be  distinguished with different drugs or selective antagonists  *neurotransmitter ­> agonists ­> receptors  ■ Ligand­binding methods: Any chemical compound that binds to a specific  site on a receptor  ● Ligand can be agonist, antagonist, or chemical neurotransmitter  itself  ■ Molecular analysis  ● neurotransmitter receptor proteins  ○ Transmitter­gated ion channels  ○ G­protein coupled receptors  ­Neurotransmitter Chemistry  >Dale’s principle: neuron has only one neurotransmitter} violated by co­transmitters  ● Cholinergic neurons: synthesized by motor neurons ­> choline transporter allows ChAT  to be made into ACh and transported in a vesicle } powered by Na+ and choline  determines amt of ACh } rate limiting step  ○ AChE degrades ACh into choline and acetic acid in the synaptic cleft  ● Catecholaminergic neurons~involved in regulation of movement, mood, attention, and  visceral function  ○ Contain tyrosine hydroxylase­catalyzes synthesis } rate limiting  ■ Controlled by end­product inhibition  ○ Transmitters  ■ Dopamine  ■ Norepinephrine  ■ epinephrine/adrenaline  ● Serotonergic neurons: regulate mood, emotional behavior, and sleep  ○ Limited by availability of trptophan  ○ Synthesis:    ■ Tryptophan is converted first into an intermediary  ■ 5­HTP is then converted to 5­HT  ○ Then reuptake or degraded  ● Amino acidergic neurons  ○ Glu, Gly, and Gaba are neurotransmitters at CNS synapses  ■ Gaba not used to construct proteins only transmitter/ major source of  synaptic inhibition in the nervous system  ● Can easily become inhibitory  ● Other Neurotransmitter Candidates and Intercellular Messengers  ○ ATP: released into the cleft by presynaptic spikes in a Ca 2  ­dependent manner  ○ Endocannabinoids: small lipid molecules released from post and act on pre}  retrograd signaling  ■ Stimulated by elevated [Ca 2  ]  ■ Qualities:  1. They are not packaged in vesicles like most other neurotransmitters;  instead, they are manufactured rapidly and on demand.  2. They are small and membrane permeable; once synthesized, they can  diffuse rapidly across the membrane of their cell of origin to contact  neighboring cells.  3. They bind selectively to the CB1 type of cannabinoid receptor, which is  mainly located on certain presynaptic terminals.  ■ CB1: G protein/ reduce Ca2+  ○ Nitric Oxide: causes smooth muscle of blood vessels to relax  ­Transmitter­Gated channels  ● Structure: ACh: 5 subunits to create a pore  ○ Stretches where the receptor has similar sequences of amino acids  ○ In general most have:  ■ 4 hydrophobic segments that span the membrane of the receptor in  subunits  ■ Exceptions: ATP and Glu  ● Amino acid­gated channels: mediate most of the fast synaptic transmission in the CNS  ○ The pharmacology of their binding sites describes which transmitters affect them  and how drugs interact with them.  ○ The kinetics of the transmitter binding process and channel gating determine the  duration of their effect.  ○ The selectivity of the ion channels determines whether they produce excitation or  inhibition and whether Ca 2  enters the cell in significant amounts.  ○ The conductance of open channels helps determine the magnitude of their  effects.  1. Glutamate­Gated channels  a. AMPA­gated (permeable to Na+ and K+) and NMDA­gated channels (permeable  to Ca2+ + inward ionic current is voltage dependent and at rest, pore is blocked  by Mg2+) mediate the bulk of fast excitatory synaptic transmission in the brain by  admitting an excess of Na+  2. GABA­gated and Glycine­gated (chloride) channels  a. Gaba: mediates synaptic inhibitions  b. Glycine: mediates the rest  c. Affected by drugs to enhance inhibition  ­G­protein­coupled receptors and effectors  ● Structure:  ○ Single polypeptide: 7 membrane­spanning alpha helices  ○ Two of the extracellular loops of the polypeptide form the transmitter binding sites  ■ Structural variations in this region determine which neurotransmitters,  agonists, and antagonists bins to the receptor  ● Ubiquitous G­Proteins: links neurotransmitter and effector protein  1. Each G­protein has three subunits­> In the resting state, a guanosine diphosphate (GDP)  molecule is bound to the G subunit, and the whole complex floats around on the inner surface of  the membrane.  2. If this GDP­bound G­protein bumps into the proper type of receptor and if that receptor has a  transmitter molecule bound to it, then the G­protein releases its GDP and exchanges it for a  GTP that it picks up from the cytosol.  3. The activated GTP­bound G­protein splits into two parts: the G  subunit plus GTP and the G  complex. Both can then move on to influence various effector proteins.  4. The G subunit is itself an enzyme that eventually breaks down GTP into GDP. Therefore, G  eventually terminates its own activity by converting the bound GTP to GDP.  5. The G  and G   subunits come back together, allowing the cycle to begin again.  >Gs: stimulatory  >GI: inhibitory  ● G­protein coupled effector systems  ○ Bind to G­protein gated ion channels  ○ Bind to G­protein activated enzymes  ○ Shortcut pathway: localized (action occurs within membrane)  ○ Second messenger cascades: activating certain enzymes  ■ Protein kinases esp important (ATP)  ○ Phosphorylation and dephosphorylation  ■ Protein phosphatase: act rapidly to remove phosphates  ○ Signal cascades  ■ Although it is slow signal amplification is one advantage  ■ The use of small messengers that can diffuse quickly allows signaling at a  distance, over a wide stretch of cell membrane  ■ Provide many sites for further regulation  ■ generate very long­lasting chemical changes in cells  ­divergence and convergence in neurotransmitter systems  ● Divergence: ability of one transmitter to activate more than one subtype of receptor, and  cause more than one type of postsynaptic response  ● Convergence: Multiple transmitters, each activating their own receptor type, can  converge to influence the same effector system 


Buy Material

Are you sure you want to buy this material for

25 Karma

Buy Material

BOOM! Enjoy Your Free Notes!

We've added these Notes to your profile, click here to view them now.


You're already Subscribed!

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

Why people love StudySoup

Bentley McCaw University of Florida

"I was shooting for a perfect 4.0 GPA this semester. Having StudySoup as a study aid was critical to helping me achieve my goal...and I nailed it!"

Anthony Lee UC Santa Barbara

"I bought an awesome study guide, which helped me get an A in my Math 34B class this quarter!"

Steve Martinelli UC Los Angeles

"There's no way I would have passed my Organic Chemistry class this semester without the notes and study guides I got from StudySoup."


"Their 'Elite Notetakers' are making over $1,200/month in sales by creating high quality content that helps their classmates in a time of need."

Become an Elite Notetaker and start selling your notes online!

Refund Policy


All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email


StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here:

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to

Satisfaction Guarantee: If you’re not satisfied with your subscription, you can contact us for further help. Contact must be made within 3 business days of your subscription purchase and your refund request will be subject for review.

Please Note: Refunds can never be provided more than 30 days after the initial purchase date regardless of your activity on the site.