New User Special Price Expires in

Let's log you in.

Sign in with Facebook


Don't have a StudySoup account? Create one here!


Create a StudySoup account

Be part of our community, it's free to join!

Sign up with Facebook


Create your account
By creating an account you agree to StudySoup's terms and conditions and privacy policy

Already have a StudySoup account? Login here

Project 2 Engineering, Week 3 Notes

by: Ivan Diaz

Project 2 Engineering, Week 3 Notes 1920

Marketplace > University of North Texas > Engineering > 1920 > Project 2 Engineering Week 3 Notes
Ivan Diaz

Preview These Notes for FREE

Get a free preview of these Notes, just enter your email below.

Unlock Preview
Unlock Preview

Preview these materials now for free

Why put in your email? Get access to more of this material and other relevant free materials for your school

View Preview

About this Document

Displays basic plotting codes for MatLab and their graph's
Project II Intro to Electrical Engineering
Eric Aryeh
Class Notes
Calculus, Math, Matlab
25 ?




Popular in Project II Intro to Electrical Engineering

Popular in Engineering

This 6 page Class Notes was uploaded by Ivan Diaz on Saturday September 24, 2016. The Class Notes belongs to 1920 at University of North Texas taught by Eric Aryeh in Fall 2016. Since its upload, it has received 4 views. For similar materials see Project II Intro to Electrical Engineering in Engineering at University of North Texas.


Reviews for Project 2 Engineering, Week 3 Notes


Report this Material


What is Karma?


Karma is the currency of StudySoup.

You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 09/24/16
Ivan Diaz Dr. Eric Aryeh EENG 1920 9/18/16 Assignment 3 1. a. x=linspace(­3,3,75); y1=exp(x); plot(x,y1,'b­'); hold on y2=x;  plot(x,y2,'ko­­'); y3=1+x+(x.^2)/2; plot(x,y3,'rs:'); title('Plots of Approximations of exp(x)'); xlabel('x'); ylabel('Approximations of exp(x)'); text(2,8,'exp(x)'); gtext('Linear Approxmiation'); gtext('Quadratic Approximation'); axis([­3 3 ­5 15]) hold off b. x=linspace(­3,3,75); y1=exp(x); plot(x,y1,'b­'); hold on y2=x;  plot(x,y2,'ko­­'); y3=1+x+(x.^2)/2; plot(x,y3,'rs:'); title('Plots of Approximations of exp(x)'); xlabel('x'); ylabel('Approximations of exp(x)'); legend('exp(x)','Linear Approximation','Quadratic Approximation')  axis([­3 3 ­5 15]) hold off 2. a. x=linspace(­3,3,50);y=x; [x,y]=meshgrid(x,y); Z=sin(x).*cos(x).*exp(­sqrt(x.^2+y.^2)); meshz(Z) title('Plot created by meshz') xlabel('x') ylabel('y') zlabel('z') Lines go through x and y planes and rise up to create the shape. b. x=linspace(­3,3,50);y=x; [x,y]=meshgrid(x,y); Z=sin(x).*cos(x).*exp(­sqrt(x.^2+y.^2)); waterfall(Z) title('Plot created by  Surf') xlabel('x') ylabel('y') zlabel('z') Lines only run through the y plane to create shape but still rise up. c. x=linspace(­3,3,50);y=x; [x,y]=meshgrid(x,y); Z=sin(x).*cos(x).*exp(­ sqrt(x.^2+y.^2)); mesh(x,y,Z) title('Plot created by mesh') xlabel('x') ylabel('y') zlabel('z') The shape exists in a ‘floaty’ space. d. x=linspace(­3,3,50);y=x; [x,y]=meshgrid(x,y); Z=sin(x).*cos(x).*exp(­ sqrt(x.^2+y.^2)); meshc(x,y,Z) title('Plot created by meshc') xlabel('x') ylabel('y') zlabel('z') Plot exists in a ‘floaty’ space but with proximity lines on the xy plane. e. x=linspace(­ 3,3,50);y=x; [x,y]=meshgrid(x,y); Z=sin(x).*cos(x).*exp(­ sqrt(x.^2+y.^2)); surf(x,y,Z) title('Plot created by Surf') xlabel('x') ylabel('y') zlabel('z') Plot exists in a ‘floaty’ space and color shades in between elements for a more solid shape. f. x=linspace(­3,3,50);y=x; [x,y]=meshgrid(x,y); Z=sin(x).*cos(x).*exp(­ sqrt(x.^2+y.^2)); surf(x,y,Z) shading interp title('Plot created by Surf with Shading') xlabel('x') ylabel('y') zlabel('z') Plot exists in a ‘floaty’ space and lines are not apparent on the shape. 3. function x=issquare(a,b); if a==b      x=1     fprintf('The Matrix is a square matrix') else     x=0     fprintf('The Matrix is not a square matrix') end 4. mi_per_hour = 0:5:70; ft_per_sec = (mi_per_hour)*5280/3600 table(:,1) = mi_per_hour'; table(:,2) = ft_per_sec'; disp('Distance/Time Conversion') disp('miles per hour and feet per second') disp(table) 5. vectorzip(x,y) 6. a. The properties of engineering requirements are Abstract, Verifiable, Unambiguous,  and Traceable. Abstractness describes how the solution to the requirement should not be  inherently obvious and would likely be brought out by experimentation or verification.  Unambiguous describes how the requirement has all the parts to the problem are  identified and the offered statement is clear and readable. Verification means the  requirement can be tested in and proven in real applications. Traceable means the  requirement is verifiable. b. “The system will employ smart power monitoring technology to achieve ultra­low  power consumption.” This statement is not Abstract because it provides a solution (smart  power monitoring technology) to the problem. It is ambiguous so it fails that requirement. It has potential to be verifiable if the system is defined. It’s not traceable because it’s not  verifiable. A better statement: “The household will employ smart power monitoring  technology to achieve power consumption lower than the leading brand”


Buy Material

Are you sure you want to buy this material for

25 Karma

Buy Material

BOOM! Enjoy Your Free Notes!

We've added these Notes to your profile, click here to view them now.


You're already Subscribed!

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

Why people love StudySoup

Jim McGreen Ohio University

"Knowing I can count on the Elite Notetaker in my class allows me to focus on what the professor is saying instead of just scribbling notes the whole time and falling behind."

Jennifer McGill UCSF Med School

"Selling my MCAT study guides and notes has been a great source of side revenue while I'm in school. Some months I'm making over $500! Plus, it makes me happy knowing that I'm helping future med students with their MCAT."

Jim McGreen Ohio University

"Knowing I can count on the Elite Notetaker in my class allows me to focus on what the professor is saying instead of just scribbling notes the whole time and falling behind."

Parker Thompson 500 Startups

"It's a great way for students to improve their educational experience and it seemed like a product that everybody wants, so all the people participating are winning."

Become an Elite Notetaker and start selling your notes online!

Refund Policy


All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email


StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here:

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to

Satisfaction Guarantee: If you’re not satisfied with your subscription, you can contact us for further help. Contact must be made within 3 business days of your subscription purchase and your refund request will be subject for review.

Please Note: Refunds can never be provided more than 30 days after the initial purchase date regardless of your activity on the site.