New User Special Price Expires in

Let's log you in.

Sign in with Facebook


Don't have a StudySoup account? Create one here!


Create a StudySoup account

Be part of our community, it's free to join!

Sign up with Facebook


Create your account
By creating an account you agree to StudySoup's terms and conditions and privacy policy

Already have a StudySoup account? Login here

Chemistry 111 Week 5 Atomic Structure

by: Makayla Richardson

Chemistry 111 Week 5 Atomic Structure CHEM 111 - 02

Makayla Richardson

Preview These Notes for FREE

Get a free preview of these Notes, just enter your email below.

Unlock Preview
Unlock Preview

Preview these materials now for free

Why put in your email? Get access to more of this material and other relevant free materials for your school

View Preview

About this Document

These notes cover the Atomic Spectrum, that includes waves of light, frequency, wavelengths, the atomic spectra, emission and absorption spectrum's, the Quantum Theory, photons, the Photoelectric E...
General Chemistry I
Dr. Antonio Lara
Class Notes
General Chemistry
25 ?




Popular in General Chemistry I

Popular in Chemistry and Biochemistry

This 5 page Class Notes was uploaded by Makayla Richardson on Sunday September 25, 2016. The Class Notes belongs to CHEM 111 - 02 at New Mexico State University taught by Dr. Antonio Lara in Fall 2016. Since its upload, it has received 20 views. For similar materials see General Chemistry I in Chemistry and Biochemistry at New Mexico State University.

Similar to CHEM 111 - 02 at NMSU


Reviews for Chemistry 111 Week 5 Atomic Structure


Report this Material


What is Karma?


Karma is the currency of StudySoup.

You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 09/25/16
Chapter 3 Sections 1­4: The Atomic Structure 1) Wavesof Light  Electromagnetic Radiation (Radiant Energy): Forms of radiant energy in the  electromagnetic spectrum.   Electromagnetic Spectrum: Continuous range of radiant energy. Includes gamma  rays, X rays, ultraviolet radiation, visible light, infrared radiation, and radio  waves.  ­Gamma Rays: The highest energy with the shortest wavelength. Extremely  dangerous to the human skin, is very radioactive. ­X­Rays: Also high in energy. The photons are absorbed by calcium, which is  why they are used in hospitals.  ­Ultraviolet Light: Types A,B, and C. Very energetic photons, found in the  2 atmosphere. O  slows down ultraviolet photons. ­Visible Light: The light and colors that you can see with the naked eye.  ­Infrared Radiation: vibrating molecules, moving electron clouds, less than red  light.  ­Microwaves: All depends on the size and electrons of the electron in how they  move. Microwaves affect H O m2lecules.  ­Radio Waves: low frequency with flipping molecules. ­Violet light has the highest energy and shortest wavelength.  ­Red light is the lowest frequency and longest wavelength.  James Clerk Maxwell developed the theory that electromagnetic radiation moves  as waves of oscillating electric and magnetic fields.  ­Electric waves move up and down. ­Magnetic waves move side to side.   Wavelength ( λ ): The distance from crest to crest of wave.   Frequency ( ν ): number of crests of a wave that passes in a specific time per  second.  ­per second: s ­1 ­1  Hertz (Hz): SI unit of frequency with units of reciprocal seconds. 1 Hz= 1s = 1  cycle cycle per second (cps)   The shorter the wavelength, the higher the frequency.  Speed of light (c): how fast photons travel through a transparent medium. c ­ λν=c∨ν= λ 8 ­value of c=2.998x10  m/s A) Calculating Frequency from Wavelength  What is the frequency of yellow­orange light ( λ=589nm ) produced by  sodium vapor street lights. (c=2.998x10  m/s)      I) Convert nanome­9rs to meters  1 nm=10  m is the conversion factor   Frequencies of visible light are about 10  Hz or 10 s4  ­1 c  Substitute into ν= λ II) Substitute and Solve 8 2.998x10 m/s =5.09x10 s14 −1 10 m 589nm x 1nm      Cross out all of the meters and nanometers  Divide   Round up 14 ­1  Add the hertz per second 10 s *Remember wavelength and frequency are reciprocal; so one increases and one decreases.  2) Atomic Spectra   Fraunhofer Lines: dark lines in an otherwise continuous solar spectrum.  Atomic Emissions Spectra: patterns of bright lines produced when an atom vaporizes  when excited.  Atomic Absorption Spectra: patterns of dark lines produced after radiation passes through atoms. 3) Particles of Light Quantum Theory   Kirchkoff studied the continuous emission spectra with heated metals. ­Blackbody Radiations: sources of radiant energy that absorb all light that strikes them.       A) Photons of Energy  Max Planck, threw out the laws of classical physics and discovered that elements emitted  electromagnetic radiation based on the quantum.  ­Quantum: Smallest quantity from a form of energy  ­Defined by: E=h ν  ν = frequency of radiation   = the Planck Constant: 6.626x10 J*s h  E= hc ν ­The module has become known as the Quantum Theory: the idea that energy is             absorbed and emitted in discrete quantities.   Quantized: values restricted to whole numbers of a certain value. ­Ex: By taking an elevator you can really only stop on the specific floors, not between the floors. But if you take the stairs you can stop between the floors  ­When you walk up the stairs energy is being absorbed. ­When you walk down the stairs energy is released.   Photons: a quantum of electromagnetic radiation. They are the building blocks of  electromagnetic radiation. I) Calculating Energy of a Photon  What is the energy of a photon of a red light that has a wavelength of the 656  electromagnetic spectrum? a) Calculate energy of a photon starting with wavelength: E=hv     h=6.626x10 J*s      c=2.998x10  m/s b) Convert nanometers to meters so that distance cancels out  −34 2.998x10 m 8 (6.626x10 J∗s)( s ) c) Ε= hc =  =3.03x10 −19J   ν 10 m 656nmx 1nm       B) The Photoelectric Effect  Won Albert Einstein a Noble Prize.  Photoelectric Effect: when electrons are released from an element as a result of  electromagnetic radiation strikes it.  Threshold Frequency (v )o minimum frequency of light required to produce the  photoelectric effect. ­If the radiation of frequencies is less than the threshold frequency of that element, then it will not emit any photoelectrons, regardless of the radiation intensity. ­If the radiation produces at least a few photoelectrons then it was equal to or greater than the threshold frequency.  Work Function ( ϕ¿ : minimum quantity of energy needed to emit photoelectrons from an element.  ϕ=hv o ­Is related to the strength of the attraction of the element nuclei and the element electrons. ­You can also calculate the work function of a target metal by:  ɸ=hv−¿ KE electrons       *Kinetic Energy Electrons I) Using the Work Function ­19 The work function of mercury is 7.22x10 J. What is the minimum frequency required to  get mercury to release photoelectrons? Can visible light produce the photoelectric effect  in mercury?  a. Rearrange the work function and solve for (v o.      ov = hɸ b. Plug in the work function of mercury and Planck’s Constant. ϕ 7.22x10 −19J 15 −1 V o  =  −34 =1.09x10 s   h 6.626x10 J∗s ­Cross out joules ­Divide numerator by denominator ­Take the exponents, and subtract. ­19­ ­ 34= 15                  c.   The frequencies of visible light are between 10  and 10  Hz.  4) The Hydrogen Spectrum and the Bohr Model  Johann Balmer studied the emission spectrum of hydrogen atoms. He created an  empirical equation.   To express wavelength in nanometers and units most involved in visible light; use the  equation:  2 364.54m                   = 2 2   m −n ­mis greater than 2. Values of 3,4,5, and 6 wavelengths of the four brightest hydrogen  lines.  ­n is equal to 2.  ­Try Balmer’s equation and plug in m=3. Your answer should be 656.21 nm.  Another version of finding hydrogen emission wavelengths is the Rydberg empirical  equation:  1 1 1                  (H 2 − 2) λ n1❑ n2❑ ­n1 nd n 2are positive integers, 2  is greater than1n ­RH s the Rydberg Constant. This depends on the uints expressed for wavelength. It could be:  1.097x10 m ­1 5 ­1  1.097x10 cm  1.097x10 nm ­1  Generally the nanometer conversion is used to determine the wavelength. ­Now try out the Rydberg Emerpical Equation and let n =7 a2d n =2. 1our answer  should be  λ=397.0nm . A) The Bohr Model   Niels Bohr made huge advancements in the way we find emission  wavelengths.   The Bohr Model looks like: 1 1 ­ ΔΕ=−2.178x10 −18J( − ) n final2 ninitial2 ­ Δ  this symbol is called delta and means change. ­n final where the electron ended up after absorbing energy. ­n initialwhere the electron started. *If the initial value is larger than the final value then it means the        electron loses energy. *If the initial value is smaller than the final value it means that the electron gains energy.  * The edge of the atom is marked at 0, anything closer to the nucleus is a  negative number, where anything outside of the nucleus is a positive  number.   Ground State: the most stable, and lowest energy state of an electron particle.  Excited State: any energy state above ground state.  Electron Transition: movement of electrons between energy levels.  Ionization: completely getting rid of the electron from the atom. n= ∞


Buy Material

Are you sure you want to buy this material for

25 Karma

Buy Material

BOOM! Enjoy Your Free Notes!

We've added these Notes to your profile, click here to view them now.


You're already Subscribed!

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

Why people love StudySoup

Jim McGreen Ohio University

"Knowing I can count on the Elite Notetaker in my class allows me to focus on what the professor is saying instead of just scribbling notes the whole time and falling behind."

Janice Dongeun University of Washington

"I used the money I made selling my notes & study guides to pay for spring break in Olympia, Washington...which was Sweet!"

Steve Martinelli UC Los Angeles

"There's no way I would have passed my Organic Chemistry class this semester without the notes and study guides I got from StudySoup."

Parker Thompson 500 Startups

"It's a great way for students to improve their educational experience and it seemed like a product that everybody wants, so all the people participating are winning."

Become an Elite Notetaker and start selling your notes online!

Refund Policy


All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email


StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here:

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to

Satisfaction Guarantee: If you’re not satisfied with your subscription, you can contact us for further help. Contact must be made within 3 business days of your subscription purchase and your refund request will be subject for review.

Please Note: Refunds can never be provided more than 30 days after the initial purchase date regardless of your activity on the site.