New User Special Price Expires in

Let's log you in.

Sign in with Facebook


Don't have a StudySoup account? Create one here!


Create a StudySoup account

Be part of our community, it's free to join!

Sign up with Facebook


Create your account
By creating an account you agree to StudySoup's terms and conditions and privacy policy

Already have a StudySoup account? Login here

Griffiths Genetics Chapter 5

by: Taylor Swifty

Griffiths Genetics Chapter 5 BIOLOGY 206

Taylor Swifty
GPA 4.0
View Full Document for 0 Karma

View Full Document


Unlock These Notes for FREE

Enter your email below and we will instantly email you these Notes for Genetics

(Limited time offer)

Unlock Notes

Already have a StudySoup account? Login here

Unlock FREE Class Notes

Enter your email below to receive Genetics notes

Everyone needs better class notes. Enter your email and we will send you notes for this class for free.

Unlock FREE notes

About this Document

These notes cover Chapter 5 from Introduction to Genetic Analysis by Griffiths.
Michael O'Connor
Class Notes




Popular in Genetics

Popular in Biology

This 3 page Class Notes was uploaded by Taylor Swifty on Sunday September 25, 2016. The Class Notes belongs to BIOLOGY 206 at University of Missouri - Kansas City taught by Michael O'Connor in Fall 2016. Since its upload, it has received 6 views. For similar materials see Genetics in Biology at University of Missouri - Kansas City.


Reviews for Griffiths Genetics Chapter 5


Report this Material


What is Karma?


Karma is the currency of StudySoup.

You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 09/25/16
Chapter 5 The Genetics of Bacteria and Their Viruses Outline 5.1 – Working with microorganisms 5.2 – Bacterial conjugation 5.3 – Bacterial transformation 5.4 – Bacteriophage genetics 5.5 – Transduction 5.6 – Physical maps and linkage maps compared Learning Outcomes After completing this chapter, you will be able to  Distinguish between the experimental procedures and analyses in the three main ways by which  bacteria exchange genes.  Map bacterial genomes using interrupted conjugation.  Map bacterial genomes using recombinant frequency.  Assess the outcome of double transformation experiments in terms of linkage.  Predict the outcomes of transduction experiments using phages capable of generalized or restricted  transduction.  Map phage genomes by recombination in double infections of bacteria.  Design experiments to map a mutation caused by transposon mutagenesis.  Predict the inheritance of genes and functions borne on plasmids in bacterial crosses. DNA technology  is responsible for rapid advances being made in genetics of all model organisms  Examples: o full genome sequences of humans and chimpanzees in recent years o popularity of DNA­based forensic analysis in television shows and movies  improvements have led to sequencing of genomes of many hundreds of species  Such dramatic results are all based on use of methods that permit small pieces of DNA to be isolated   carried from cell to cell  amplified into large pure samples  sophisticated systems that permit DNA manipulations of any organism are almost all derived from  bacteria and their viruses  The advance of modern genetics to present state of understanding was  entirely dependent on the development of bacterial genetics However, the goal of bacterial genetics has never been to facilitate eukaryotic molecular genetics.  Bacteria  are biologically important  are the most numerous organisms on our planet  contribute to recycling of nutrients such as N, S, and C in ecosystems  some are agents of human, animal, & plant disease  some live symbiotically inside our mouths and intestines  many types are useful for industrial synthesis of a wide range of organic products.  belong to a class of organisms known as prokaryotes, which includes blue­green algae (cyanobacteria).  Defining feature of prokaryotes  their DNA is not enclosed in a membrane­bounded nucleus.  have genes composed of DNA arranged in a long series on a “chromosome.”  organization of their genetic material is unique in several respects. o The genome of most bacteria is a single molecule of dsDNA in the form of a closed circle. o bacteria in nature often contain extra DNA elements called plasmids.  most plasmids also are DNA circles but are much smaller than main bacterial genome.  can be parasitized by specific viruses called bacteriophages (phages) Impetus for genetic dissection of bacteria has been the same as that for multicellular organisms  to understand  their biological function. Phages and other viruses  are very different from the organisms that we have been studying so far. Viruses  have some properties in common w/organisms  their genetic material can be DNA or RNA, constituting a short “chromosome”  most biologists regard viruses as nonliving because: o they are not cells o they have no metabolism of their own.  Hence, for study of their genetics, viruses must be propagated in cells of their host organisms Bacteria, like unicellular eukaryotic organisms  reproduce asexually by cell growth and division, one cell becoming two  This asexual reproduction is quite easy to demonstrate experimentally. o is there ever a union of different types for the purpose of sexual reproduction? o how do the much smaller phages reproduce? o do they ever unite for a sex­like cycle? o These questions are pursued in this chapter. There is a variety of hereditary processes in bacteria and phages  These processes act as models – as sources of insight into genetic processes at work in all organisms  They can be cultured in very large numbers because they are so small  consequently, it is possible to  detect and study very rare genetic events that are difficult or impossible to study in eukaryotes. What hereditary processes are observed in prokaryotes?  They can undergo both asexual and sexual reproduction  mutation occurs in asexual cells in much the same way as it does in eukaryotes, and mutant alleles can  be followed through both these processes in an approach analogous to that used in eukaryotes  We shall follow alleles in this way in the chapter ahead. When bacterial cells reproduce asexually  their genomic DNA replicates and is partitioned into daughter cells, but the partitioning method is quite  different from mitosis. In sexual reproduction  two DNA molecules from different sources are brought together.  However, an important difference from eukaryotes is that, in bacteria, rarely are two complete  chromosomes brought together; usually, the union is of one complete chromosome plus a fragment of  another.  The possibilities are outlined in Figure 5­2. Gene exchange  first process to be examined will be conjugation, which is contact and fusion of two different  bacterial cells.  After fusion, one cell, called a donor, sometimes transfers genomic DNA to other cell  This transferred  DNA may be part or (rarely) all of bacterial genome.  In some cases, one or more autonomous extragenomic DNA elements called plasmids, if present, are  transferred  Plasmids are capable of carrying genomic DNA into the recipient cell  Any genomic fragment transferred by whatever route may recombine with the recipient’s chromosome  after entry. A bacterial cell  can also take up a piece of DNA from the external environment and incorporate this DNA into its own  chromosome, a process called transformation.  In addition, certain phages can pick up a piece of DNA from one bacterial cell and inject it into another,  where it can be incorporated into the chromosome, in a process known as transduction. DNA transfer  on a plasmid, by transformation or by transduction  constitutes a process known as horizontal transmission, a type of gene transmission without the need for cell division  This term  distinguishes this type of DNA transfer from that during vertical transmission,  the passage of DNA down thorough the bacterial generations. Horizontal transmission  can spread DNA rapidly through a bacterial population by contact in much the same way that a disease  spreads.  For bacteria, horizontal transmission provides a powerful method by which they can adapt rapidly to  changing environmental conditions. Phages  can undergo recombination when two different genotypes both infect the same bacterial cell (phage recombination). Before we analyze these modes of genetic exchange, let’s consider the practical ways of handling bacteria, which are much different from those used in handling multicellular organisms.


Buy Material

Are you sure you want to buy this material for

0 Karma

Buy Material

BOOM! Enjoy Your Free Notes!

We've added these Notes to your profile, click here to view them now.


You're already Subscribed!

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

Why people love StudySoup

Bentley McCaw University of Florida

"I was shooting for a perfect 4.0 GPA this semester. Having StudySoup as a study aid was critical to helping me achieve my goal...and I nailed it!"

Janice Dongeun University of Washington

"I used the money I made selling my notes & study guides to pay for spring break in Olympia, Washington...which was Sweet!"

Steve Martinelli UC Los Angeles

"There's no way I would have passed my Organic Chemistry class this semester without the notes and study guides I got from StudySoup."

Parker Thompson 500 Startups

"It's a great way for students to improve their educational experience and it seemed like a product that everybody wants, so all the people participating are winning."

Become an Elite Notetaker and start selling your notes online!

Refund Policy


All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email


StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here:

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to

Satisfaction Guarantee: If you’re not satisfied with your subscription, you can contact us for further help. Contact must be made within 3 business days of your subscription purchase and your refund request will be subject for review.

Please Note: Refunds can never be provided more than 30 days after the initial purchase date regardless of your activity on the site.