×

Let's log you in.

or

Don't have a StudySoup account? Create one here!

×

or

PSY 1110 Notes for September 23rd and 26th.

by: Kelsey Jackson

36

1

6

PSY 1110 Notes for September 23rd and 26th. PSY 1110

Marketplace > Ohio University > Psychology > PSY 1110 > PSY 1110 Notes for September 23rd and 26th
Kelsey Jackson
Ohio

Enter your email below and we will instantly email you these Notes for Elementary Statistical Reasoning

(Limited time offer)

Unlock FREE Class Notes

Everyone needs better class notes. Enter your email and we will send you notes for this class for free.

These notes cover the lecture information from Friday, September 23rd and Monday, September 26th.
COURSE
Elementary Statistical Reasoning
PROF.
Susan Tice-Alicke
TYPE
Class Notes
PAGES
6
WORDS
CONCEPTS
Statistics, variance, deviation
KARMA
Free

Popular in Psychology

This 6 page Class Notes was uploaded by Kelsey Jackson on Monday September 26, 2016. The Class Notes belongs to PSY 1110 at Ohio University taught by Susan Tice-Alicke in Fall 2016. Since its upload, it has received 36 views. For similar materials see Elementary Statistical Reasoning in Psychology at Ohio University.

×

Reviews for PSY 1110 Notes for September 23rd and 26th.

×

×

What is Karma?

You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 09/26/16
PSY 1110 rd th Notes for Friday, September 23  and Monday, September 26 . By Kelsey A. Jackson 1. Comparison of Three Measures of Central Tendency a. Normal Distribution i. Huffingtonp ost.com ii. A graph that is shaped like a bell curve has the same mean, median, and  mode.  iii. In this case, the best measurement of central tendency would be the mean,  or average, because it is the easiest to understand.  b. Bimodal Symmetrical Distribution i. statisticsh owto.com ii. with a bimodal graph, the mean and median are in the middle, but most of  the data is at the modes, so the modes are the best way to represent the  data in this graph.  c. Skewed Distribution i. ii. For both a positive and negatively skewed distribution, the best  measurement of central tendency is the median, since it accurately  displays the data that is in the center.  2. Measures of Variability a. For this example, we are going to the following simple data set.  A B C 0 4 6 2 5 6 6 6 6 10 7 6 12 8 6 Mean: 6 Mean: 6 Mean: 6 b. A measure of variability is a number that reflects how spread out the scores  are in a distribution i. Also known as the distance. c. Range i. The range is a measurement of the width of the entire distribution ii. Range = highest score – lowest score iii. For example: 1. The range for set A is 12 2. The range for set B is 4 3. The range for set C is 0 iv. A downside of using a range is that it can be sensitive to outliers. (Outliers are a score of scores that stand apart from the rest of the distribution.) d. Interquartile Range (IQR) i. The IQR is a range of the middle 50% of the distribution. th th ii. IQR = score at the 75  percentile – score at the 25  percentile iii. How to find the IQR: 1. Arrange the scores according to magnitude. Sample data set:  9 9 8 7 6 5 5 4 3 3 2 2. Find the median of the set. (5 in this case) 3. Find the median of the upper and lower halves of the data set.  (9 9 8 7 6) 5 (5 4 3 3 2) In this case, the medians are 8 and 3 4. Subtract these two means for the IQR (8­3 = 5, so 5 is the IQR in  this example.) 5. For this next example, we will have a data set with an even amount of numbers. For this, you want to take the middle two numbers and average them together to find the median.  12 10 10 9 8 8 7 6 6 4 2 2  (12 10 10 9 8 8) 7.5(median) (7 6 6 4 2 2) the two medians of these data sets are 9.5 and 5 9.5­5 = 4.5 IQR = 4.5 e. Variants i. The variant is the average of the squared deviations of the scores around  the mean. ii. iii. Example computation: X Mean of X (X­Mean of X) (X­Mean of X) ^2 9 5 4 16 8 5 3 9 6 5 1 1 4 5 ­1 1 2 5 ­3 9 1 5 ­4 16 For this data set, the EX = 30, and the EX^2 = 202 so: S^2 = (202­(900/6)/5 S^2 = (202­150)/5 S^2 = 52/5 S^2 = 10.4. (The standard variance is equal to 10.4) To find the standard deviation, take the square root of the standard variance (3.22 in this case) How to find the Population Variance (^2) The formula for population variance is: studyblue.com Example Computation: X X^2 14 196 10 100 10 100 9 81 8 64 8 64 7 49 6 36 6 36 4 16 2 4 2 4 The EX^2 is 750, and the EX is 86, so: (750­(86) ^2/12)/12 (750­(7396/12)/12 (750­616.33)/12 (133.67)/12 ^2 = 11.14 To find the population deviation, just take the square root of the population variance (3.34 in this case)

×

0 Karma

×

×

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

Why people love StudySoup

Jim McGreen Ohio University

"Knowing I can count on the Elite Notetaker in my class allows me to focus on what the professor is saying instead of just scribbling notes the whole time and falling behind."

Kyle Maynard Purdue

"When you're taking detailed notes and trying to help everyone else out in the class, it really helps you learn and understand the material...plus I made \$280 on my first study guide!"

Bentley McCaw University of Florida

"I was shooting for a perfect 4.0 GPA this semester. Having StudySoup as a study aid was critical to helping me achieve my goal...and I nailed it!"

Parker Thompson 500 Startups

"It's a great way for students to improve their educational experience and it seemed like a product that everybody wants, so all the people participating are winning."

Become an Elite Notetaker and start selling your notes online!
×

Refund Policy

STUDYSOUP CANCELLATION POLICY

All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email support@studysoup.com

STUDYSOUP REFUND POLICY

StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here: support@studysoup.com

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to support@studysoup.com