New User Special Price Expires in

Let's log you in.

Sign in with Facebook


Don't have a StudySoup account? Create one here!


Create a StudySoup account

Be part of our community, it's free to join!

Sign up with Facebook


Create your account
By creating an account you agree to StudySoup's terms and conditions and privacy policy

Already have a StudySoup account? Login here

Biol 242: Week 6 Notes (Exam 2)

by: LaKeisha Crum

Biol 242: Week 6 Notes (Exam 2) BIOL 242

Marketplace > University of Louisville > Biology > BIOL 242 > Biol 242 Week 6 Notes Exam 2
LaKeisha Crum
U of L
View Full Document for 0 Karma

View Full Document


Unlock These Notes for FREE

Enter your email below and we will instantly email you these Notes for Diversity of Life

(Limited time offer)

Unlock Notes

Already have a StudySoup account? Login here

Unlock FREE Class Notes

Enter your email below to receive Diversity of Life notes

Everyone needs better class notes. Enter your email and we will send you notes for this class for free.

Unlock FREE notes

About this Document

These notes were covered in wee six of Biol 242 (Fungi and Intro to Animals). These notes with include a summary of what Dr. Alexander said in class, tips for remembering content, and detailed pict...
Diversity of Life
James Alexander
Class Notes
fungi, Sponges, cnidarians




Popular in Diversity of Life

Popular in Biology

This 11 page Class Notes was uploaded by LaKeisha Crum on Friday September 30, 2016. The Class Notes belongs to BIOL 242 at University of Louisville taught by James Alexander in Fall 2016. Since its upload, it has received 36 views. For similar materials see Diversity of Life in Biology at University of Louisville.


Reviews for Biol 242: Week 6 Notes (Exam 2)


Report this Material


What is Karma?


Karma is the currency of StudySoup.

You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 09/30/16
Fungi : * Crash Course video over fungi basics: v=m4DUZhnNo4s  Chytridiomycota (chytrids) ­ ancestral group for fungi. Similar to slime molds and water molds.   Retain flagellated cells at some stages in life cycle.  Fungi basic information:   Common characteristics: Lack chlorophyll, lack flagella (minus chytrids) because of cell  walls, mostly unicellular, heterotrophic, saprophytic nutrient attainment. Vocab Review: saprophytic­ consumes dead, organic matter. Symbiotic­ absorbs liquids from  living host.  Nutrition: Absorption! They do this by being saprobes or symbionts. Some are parasites,  mutualists, commensals.  Haustoria: specialized hyphae that penetrate through plant cell walls to obtain nutrients. TIP:  You can remember this by associating the word haustoria with hysteria (they sound the same).  Just think, these specialized hyphae cause hysteria by tearing through the cell walls.   Fungal Structure:  Cell wall: strengthened by chitin, defends against bacteria.  Mycelium: composed of hyphae. Hyphae: make up the mycelium, large number of filaments. Two types­  aseptate (no cross walls between cells and nuclei meaning multinucleated.  septate (not multinucleated. Separated by porous cell wall) TIP: Septate sounds like separate so  the cells are separated by walls.   Life Cycle: Zygotic  Alternates between haploid and diploid states. Diploid is brief.  Steps:  1. Plasmogamy: fusion of hyphae and cytoplasm of two mating strains. 2. Dikaryotic Hyphae Forms: two cells containing two different haploid nuclei. TIP: we  usually associate “karyotic” with cells. So just think “di”= 2, “karyotic”=cells. So two  cells with two nuclei. 3. Karyogamy: fusion of two nuclei (+/­). *This is our brief diploid stage* Meiosis quickly  follows to give meiospores (haploid spores)  4. Meiospores are dispersed and then germinate produce hyphae. Hyphae that are a  combination of two mating strands. The zygote (+/­ fusion) Asexual Reproduction: aside from the above sexual steps, fungi also produce asexually. This  occurs when the mitotic division of hyphae occurs to make asexual spores and conidiophores. These form hyphae that are basically genetic clones.  Zygomycota : “algal­like” (hence the green color). Live in both marine and fresh waters.   Life Cycle: 1. Hyphae of two mating strands come in contact to produce extensions called gametangia. 2. The two fuse (plasmogamy) and create a unicellular zygosporangium. It has two haploid  nuclei. 3. A rough, thick­walled coating is created to protect the zygosporangium for months.  4. Under favorable conditions, karogamy occurs (fusion of the two haploid nuclei). This  forms a diploid nuclei. Meiosis quickly occurs. 5. The zygosporagnium opens and a sporangium grows on top of a stalk. Haploid spores are dispersed. 6. The spores germinate and produce the haploid hyphae. *Asexual reproduction can also occur. The mycelium forms spores in this phase that creates  new hyphae.  *Aseptate hyphae, septa found on bottom of gametangia.  Ascomycota : “sac fungi” Either unicellular yeast (yellow color) or septa (hyphae with  uninucleate cells containing crosswalls)   Life Cycle: 1. Hyphae of two different mating strands come in contact and form extensions  (gametangia) called ascogonia and antheridia (look familiar ?). 2. Plasmogamy occurs. 3. Many hyphae with the two nuclei form a cup­lie structure called an ascocarp. At the end  of this is an ascus.  4. Karyogamy occurs in the ascus to form the diploid nucleus. It then quickly undergoes  meiosis.  5. These four nuclei undergo mitosis to make eight nuclei. 6. The ascospores are then released from the end of the ascus.  7. They land and germinate. TIP: Ascocarp­ just remember that “asco” goes with the Ascomycota and “carp” kind of looks lie cap. So you can just think a cap that holds ascospores inside. *Asexual­ the spores are formed externally at the end of the hyphae (called condiophores).  They germinate as well.  Basidiomycota : “club fungi”, Fungi referred to as mushrooms (hence the different colors­  mushrooms are different colors) and toadstools. Many are obligate parasites, some are wood  decaying organisms (bracket fungi), some edible, others are poisonous, largest and oldest are in  this group.   Life Cycle:  1. Hyphae of two different mating strands comes into contact.  2. Plasmogamy occurs. 3. Dikaryotic mycelium is formed that is very large.  4. When the environment is favorable, the dikaryotic mycelium forms basidiocarps (very  rapidly). The basidiocarps are the “mushrooms”. This lives for many years (opposed to  the ascomycetes where this dikaryote is only found in stages before the ascocarp) 5. In the gills on the underside of the mushroom, there are swollen cells on the hyphae tips.  Here the dikaryotic cells form basidia (club­shaped) 6. Karyogamy occurs in the basidia. Meiosis then quickly occurs.  7. These form a basidiospore. They break away and are carried to germinate.  Basidium  Fig.31.18 (Campbell’s Biology) Deuteromycota: (“Fungi Imperfecti”)  molds (hence black and green color), sexual phase  unknown, multicellular, rapidly growing, asexual, can produce zygosporangia, basidiocarps, and  ascocarps, but sexual not known (imperfecti in name­ they’re not perfect like the others.) Examples: Penicillium (produce penicillin) and Aspergillus but were however moved in  Ascomycetes because their sexual phases were discovered (once this is discovered, the species  can be moved into the appropriate category) Yeasts :  Unicellular fungi that are in aquatic environments. Uses: bread, wine, cheese, beer Examples:  Candida­ can be passed sexually, live in moist mucous linings (vagina) can be problematic.  Rhodotorula­ shower curtains – pinkish. Reproduction: asexual (budding) Lichens :  Composite­ fungus (mycobiont) and alga (phycobiont). These two are dependent on each other.  Phycobiont­ unicellular green alga or cyanobacterium. TIP: “Phy” reminds me of photosynthesis  so I think green. Green leads me to think of green and cyanobacteria since they are blue/green. The fungus and alga live together in a relationship. The phycobiont completes photosynthesis.  Cyanobacteria phycobionts can also fix nitrogen that the fungus can use. In return, the fungus  protects the alga. This relationship helps them survive and grow in harsh areas where plants  cannot.  Reproduction: (asexually). They produce soredia­ few hyphae around the algal cells.  Mycorrhizae : Review­Mycorrhizae is a relationship between roots and fungi. The fungi  increase the surface area and absorption of minerals and H2O. In return the fungi gets sugar from the plant. Can sometimes be parasitic.  Like lichens, a relationship is formed between two  organisms. This time it is plant roots and fungi. Yeah,  we’ve heard this before so here’s some new stuff.  Fungi that create this: Zygomycota, Ascomycota, and  Basidiomycota. TIP: It’s always good to make  acronyms for content like this. The one that I made for  this is ABZ (kind of like abs). It also helps to make  funny or memorable associations. One for this section  could be Lichens= I like those ABZ. So I “lich” those ABZ.  Animals We are animals! So if you can remember what we do then you’ll be fine. We’re heterotrophs that need organic material and we ingest stuff right?  Quick Review: we have no cell walls, collagen­ structural proteins that make up animal bodies,  tight cell junctions Animal Tissues: Epithelial, Connective, Nervous, and Muscle TIP: Make an acronym that works  for you. For example: CNEM (looks like CHEM), or MENC Gametic Life Cycle: Diploid adult stage, haploid gametes formed by meiosis. Adults form these  haploid gametes that form with other adult gametes to form the zygote. Mitosis then occurs in  the zygotes to form larval or juvenile stages.  Life Cycle Cont… After the ova and sperm unite, mitotic division creates a solid ball of cells called the morula.  The morula then forms the blastula. The blastula is a hollow ball of cells.  The central, fluid­filled cavity inside the blastula is called the blastocoel.  *Pay attention to the size & amount of cells.      Gastrulation­ Cells move into the inside of the       blastocoel. This creates an internal cavity called the archenteron (turns into the gut lining)   Blastopore­ opening to the outside (turns into the  anus or mouth, depending) Blastopore   Archenteron           Blastocoel After gastrulation, organogenesis begins. Organogenesis is when specific organs are created.  TIP: Genesis means the origin or formation. The word means Organ formation.  Finally, the animal can then develop into a mature adult or it may continue developing through  more larval stages. The animal at this stage may be completely different from the adult and they  are sexually immature. After this stage they will go through metamorphosis to complete their  development.  Body Plans: we can place animals in groups based on four qualities. These are body symmetry,  the presence/absence of true tissues, diploblastic vs. triploblastic, and the germ layers. Body Symmetry­   Asymmetrical­ no axis, no symmetry, cannot be divided in any way. Ex. Sponges  Radially­ can be divided in many ways through the central plane (top­bottom). No  separate head, no left/right. Mirror halves in many ways. Ex. Hydra. Radiata­ goes with  cnidarians and ctenophores. These are called sessile because they must be prepared for  their environment in all ways and directions.   Bilateral (Bilateria) ­ two­side symmetry, only one plane of division through the central  axis that makes two equal sides (“bi” means 2.) These animals have distinct  characteristics: lateral (distinct left/right), anterior (distinct head), posterior (distinct tail),  dorsal (back or upper surface), and ventral (bottom surface).  Diploblastic vs. Triploblastic:   Diploblastic­ two germ layers in the animal. These two layers are the ectoderm (outer  layer of cells of the gastrula) and the endoderm (inner layer of the cells that make up the  archenteron). These end up composing the skin and gut lining.   Triploblastic­ three germ layers. In these animals, a third layer is added to the other two.  These cells are the mesoderm cells. They enter in the blastopore and form clusters near  the archenteron.  Germ Layers:  Ectoderm­ give us the nervous system, tissues of the skin ( also includes hair, scales,  enamel of teeth, inner ear, lens of the eye, nails)  Endoderm: give us the gut lining, digestive organs, glands (liver and pancreas), lung  epithelium but only in higher animals like us.   Mesoderm: give us muscle cells, blood cells circulatory system, skeletal systems,  reproductive organs, excretory systems, endocrine system, lining of body cavity  (peritoneum)    Body Cavities/Body Plans: There are 4 main types. They allow the room for organs to grow  and they cushion the organs from physical damage, they increase the surface area for gas and  nutrient movement, act as a hydrostatic skeleton, provide material storage, and are a way for  waste and gametes to exit.   Gastrovascular cavity­ these are fluid filled tracts in Cnidarians. These are incomplete  systems (one opening that acts as the anus and mouth). These cavities can also be  hydrostatic skeletons. These support the body and has fluid inside held under pressure.   Acoelomate­ The difference in these animals is the presence of mesoderm tissues inside  of the body cavity. They also have gastrovascular cavities. This body plan is found in the  flatworms.   Psudocoelom­ In these animals, a fluid filled cavity develops between the mesoderm and  endoderm. We call these animals pseudocoelomates. This layer is only partially lined  with mesodermal derived tissues. In the pseudocoelomates, the gut is not surrounded by  muscles. Instead, the food passes through because of the contraction of the outer body  wall muscles. This contraction puts pressure on the psudocoelom fluid.   Coelom or eucoelom­ This type is only found in the most advanced animals. A body cavity forms in tissues during development. It is lined with mesodermal tissues. The  digestive, circulatory, reproductive, and other organs are  within the coelom double layers of tissues. These are called mesenteries. Protostomes: the blastopore becomes the mouth. The anus comes later. Animals: annelids,  molluscs (dominant), arthropods and nematodes (sometimes in this group but don’t always  develop exactly in this way) Deuterostomes: The anus forms from the blastopore and mouth forms later. Animals:  echinoderms and chordates. TIP: “stome” means having a mouth or mouth like organ. “Proto” means first. Therefore the  word protostome means first mouth. This will make this easier to remember.  Cleavage Types:  Spiral­ cell division is diagonal to the vertical axis of the embryo. (Protostomes) Radial­ cell division occurs at right angles to other planes. The cells stack on top of each other.  Determinate­ the fate of each cell is determined early on.  The blastomeres (early cells) five rise to different parts of the  embryo. Single cell cannot be separated from the other cells or it  will die. (Protostomes) Indeterminate­ the ability to create identical twins from one  fertilized egg. The fate of the eggs are not determined until later  on. Has the potential to develop into a separate organism if separated in the early stages.  (Deuterostomes) Coelom Creation: Schizocoelom­ As the archenteron forms, mesoderm masses form near blastopore. Later on, these split open and form a fluid filled cavity. This is the schizocoelom. TIP: Schizocoelom starts with  an s and so does split. (Protostomes) Enterocoeloms­ Masses of mesodermal cells “bud” off of the archenteron. This forms the  enterocoelom. (Deuterostomes) Calcarea and   Silicea: Sponges   or Porifera   Cellular level of organization. This means no organs or systems. For gas exchange, the  sponges use diffusion. These cells are all independent and because of this, they can  complete somatic regeneration. Somatic regeneration is the sponge’s ability to form a  new sponge after cells in the original sponge were separated. This also relates to the fact  that sponges are totipotent. This means that the cells in the sponge are capable of  developing into any other cell type.  Structure of a Sponge:   Ostia­ these are the small pores that allow water to enter the sponge.   Spongocoel­ the large middle opening in the sponge  Osculum­ the larger pore at the top of the sponge. The water exits through this.   Spicules­ what the internal skeleton is made of. These are either siliceous or calcium  carbonate.  Spongin­ network of proteinaceous fibers that are sometimes present in the spicules.  Choanocytes: flagellated cell. These line the spongocoel. They have a collar of cytoplasm that catches the food particles that pass from the water in the sponge. From that point  digestion occurs intracellularly.  Pinacocytes: These make up the outer  covering of the sponge. They look like  plates.  Amebocytes: these digest and transport the  food that they get from the choanocytes.  They can produce the spicule and spongin,  control reproduction, and contract the  sponge.  Reproduction:  Sexually: After fertilization, mitosis occurs that creates the larva. It is then released into the  water. It floats around until it sticks to an area. Mitosis then continues to create a new adult  sponge. ( Vocab Review: Monoecious­ these organisms have both male and female reproductive  organs. TIP: One plant­ mono, both parts. ) Asexually­ They can also use budding and fragmentation to reproduce. (Gemmule­ a cluster of  amebocytes in a hard shell. These can survive harsh conditions)  Radiata: Cnidarian Common characteristics:  Diploblastic and acoelomate body plan. The two dermal layers are: Epidermis (outer) and gastrodermis (inner). In between these layers is the mesoglea (noncellular gelatinous  layer). This layer is thin in hydrozoans and thick in scyphozoans.   Two body forms: Sessile polyp and free­swimming medusa.   Cnidocytes­ stinging cells (especially on the epidermis).  Nematocyst­ a cell inside of the cnidocyte. This is spiked, harpoon like cell that can be  discharged out of the cell to attack intruders or food. They are threadlike and wrap around the target. TIP: “nema” means resembling a thread.   Nerve net­ no distinct brain but a net that can identify stimuli.   Digestion: extracellularly in gastrovascular cavity. They excrete digestive enzymes into  this cavity. First, chemical digestion happens extracellularly, then the soupy broth of food is brought into the cell using endocytosis. The rest of digestion is completed in the food  vacuoles.   Reproduction­ Asexual: budding Sexual: either polyps or medusa produce sperm and egg. Fertilization occurs externally in the water. If the fertilization is internal then it occurs in  the female. Major Classes:  Hydrozoa­ both polyp and medusa stages. Polyp is dominant. Mostly marine.  Scyphozoa­ true jellyfishes. All marine and medusa is dominant.  Anthozoa­ All marine, no medusa stage, sessile polyps. Polyps can be individual or colonial. Bilateria Lophotrochozoa: these animals have bilateral symmetry. They are the Platyhelminthes, molluscs, and annelids.  Ecdysozoa­ nematodes and arthropods Deuterostomia­ echinoderms and chordates  Platyhelminthes  ­flatworms   Common characteristics:   Osmoregulation/Excretory System: Contains protonephridia that have flame cells at the  end. Flame cells are flagellated (flagella resembles a candle flicker. Hence their name).   Body Plan: Triploblastic, acoelomate. Bilaterally symmetric. Cephalization: clusters of  nerve cells (ganglia) in the anterior (head) end with nerve cords running posteriorly. Can  learn.   They have tissues and organs. (Epithelial, muscular, nervous tissues. Digestive, sensory,  nervous, and reproductive organs)  Incomplete digestive tract. Either extracellular digestion (chemical) or absorption through body wall.   Movement: move with cilia. They secrete a thick mucus to make this possible.  Undulation of body wall muscles.   Reproduction: most monoecious and can self­fertilize but others can cross fertilize as  well. Asexual­ fragmentation and regeneration  Major Classes: Tubellaria­ free living, predators or scavengers mostly but some are parasites, marine and  freshwater, cilia to move Trematoda­ (flukes) Parasitic (live in the liver, lung, stomach, bladder of vertebrates), the  vertebrate is the definitive host where sexual reproduction occurs. They exit the vertebrate by  ripping through the cells and entering the feces. They then find an intermediate host (usually  snail) to complete asexual reproduction. They exit through the stomach of the snail (Dr.  Alexander used the movie Alien as an example). The cercaria is what exits the snail. It is a  forked tail­like larvae. They then enter the vertebrate again.   


Buy Material

Are you sure you want to buy this material for

0 Karma

Buy Material

BOOM! Enjoy Your Free Notes!

We've added these Notes to your profile, click here to view them now.


You're already Subscribed!

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

Why people love StudySoup

Steve Martinelli UC Los Angeles

"There's no way I would have passed my Organic Chemistry class this semester without the notes and study guides I got from StudySoup."

Anthony Lee UC Santa Barbara

"I bought an awesome study guide, which helped me get an A in my Math 34B class this quarter!"

Bentley McCaw University of Florida

"I was shooting for a perfect 4.0 GPA this semester. Having StudySoup as a study aid was critical to helping me achieve my goal...and I nailed it!"

Parker Thompson 500 Startups

"It's a great way for students to improve their educational experience and it seemed like a product that everybody wants, so all the people participating are winning."

Become an Elite Notetaker and start selling your notes online!

Refund Policy


All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email


StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here:

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to

Satisfaction Guarantee: If you’re not satisfied with your subscription, you can contact us for further help. Contact must be made within 3 business days of your subscription purchase and your refund request will be subject for review.

Please Note: Refunds can never be provided more than 30 days after the initial purchase date regardless of your activity on the site.