New User Special Price Expires in

Let's log you in.

Sign in with Facebook


Don't have a StudySoup account? Create one here!


Create a StudySoup account

Be part of our community, it's free to join!

Sign up with Facebook


Create your account
By creating an account you agree to StudySoup's terms and conditions and privacy policy

Already have a StudySoup account? Login here

Lecture notes from Astronomy Week 5

by: Becca Petersen

Lecture notes from Astronomy Week 5 AST2002-16Fall 0001

Marketplace > University of Central Florida > Science > AST2002-16Fall 0001 > Lecture notes from Astronomy Week 5
Becca Petersen
University of Central Florida

Preview These Notes for FREE

Get a free preview of these Notes, just enter your email below.

Unlock Preview
Unlock Preview

Preview these materials now for free

Why put in your email? Get access to more of this material and other relevant free materials for your school

View Preview

About this Document

Notes from week 5 of lectures.
Dr. James Cooney
Class Notes
25 ?




Popular in Astronomy

Popular in Science

This 18 page Class Notes was uploaded by Becca Petersen on Saturday October 1, 2016. The Class Notes belongs to AST2002-16Fall 0001 at University of Central Florida taught by Dr. James Cooney in Fall 2016. Since its upload, it has received 7 views. For similar materials see Astronomy in Science at University of Central Florida.

Similar to AST2002-16Fall 0001 at University of Central Florida


Reviews for Lecture notes from Astronomy Week 5


Report this Material


What is Karma?


Karma is the currency of StudySoup.

You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 10/01/16
Astronomy Week 5 Some basic physics –   Kepler’s  laws  seem  kind  of  arbitrary  –  there  are  basic  laws  of  nature  and   physics  that  underlie  Kepler’s  laws     Motion   Position     Requires  a  coordinate  system  (ex:  it  lies  3  meters  above.)     Displacement  –  change  in  the  position  of  things       Velocity     Rate  of  change  of  position  –  describes  how  quickly  that  displacement   takes  place     A  vector     Not  only  the  speed  but  the  direction**  (ex:  60  miles  per  hour,  north)     Acceleration   Rate  of  change  of  velocity  (ex  –  if  you  go  from  one  meter  per  second  to   to  meters  per  second  then  your  acceleration  was  2  meters  per  second-­‐ per  second)     Also  a  vector  –  has  a  direction     Understand  that….     You  can  accelerate  without  changing  your  speed  –  going  around  in  a  circle   where  your  speed  is  the  same  but  your  direction  changes     Moving  in  a  straight  line  in  uniform  speed  –  you  have  a  velocity  but  no   acceleration     You  can  have  acceleration  not  equal  to  zero  but  velocity  equal  to  zero   –  if  you   toss  something  up  in  the  air  –  its  direction  of  its  velocity  is  going  up  but  the   acceleration  is  going  down  –  it  slows  down  as  it  travels  higher  in  the  air  –  and   that  statement  is  the  case  at  its  very  peak       Isaac Newton   Between  1665-­‐1667  (he  was  22  in  65)   Known  for…   *He  sort  of  co-­‐invented  calculus   *Newton’s  laws   *Basis  of  all  physics  until  Einstein     *Law  of  universal  gravitation     He  wanted  to  understand  the  nature  of  the  universe  and  why  Kepler's  laws   worked  the  way  they  did.    So  he  basically  found  the  fundamental  laws  of  nature     Came  up  with  the  universal  law  of  gravitation       Newton’s Laws of Motion 1. A  body  remains  at  rest  or  moves  with  constant  velocity  unless  acted   upon  by  an  outside  force  –     I.e.  whatever  state  of  motion  they  are  in,  they  are  going  to   keep  that  exact  velocity  until  you  do  something  to  it.    There   are  things  in  our  every  day  lives  (friction,  gravity,  air   resistance)  that  will  act  on  objects  to  change  their  velocity   or  stop  them.         Being  at  rest  is  essentially  the  same  thing  as  being  in  perfect   constant  motion  (think  about  being  on  an  airplane-­‐  do  you   know  you’re  moving?  –  the  only  way  you  know  you’re   moving  is  by  gaging  it  on  other  things.    So  motion  is  very   relative.       2.    The  change  in  a  body’s  velocity  due  to  an  applied  force  is  in  the  same   direction  as  the  force  and  proportional  to  it.    But  is  inversely  proportional  to   the  body’s  mass.    F=ma       Force  =  mass  times  acceleration     Mass  is  a  measure  of  how  much  something  does  not  want  its   motion  changed.    High  mass  thing  will  have  a  very  low   acceleration  and  vise  versa.    So  pushing  a  brick  will  move   more  slowly  than  pushing  a  stack  of  sticky  notes.         Think  of  the  example  from  class  –  if  you  out  a  lead  brick  over  your  hand  (lets   say  its  30  pounds)  it  has  a  higher  mass  and  doesn’t  want  to  move  so  you  can   hit  it  really  hard  with  a  hammer  and  feel  no  pain.    And  vice  versa  with  a  block   of  wood.    It  has  less  mass  and  is  much  easier  to  move  because  of  the  less   resistance  so  you  will  experience  much  more  pain     3.  For  every  applied  force,  a  force  of  equal  size  but  opposite  direction  arises.     Object  A  acts  on  object  B  and  object  B  acts  on  object  A   So  the  earth  is  pulling  you  down  by  160lbs  and  you  are  pulling  the   earth  up  by  160lbs.     Discussion  on  the  interaction  of  things  –  where  the  force  came  from  –  so   it’s  a  discussion  of  pairs  of  a  thing  where  if  I  do  something  to  you,  you  do   something  to  me       Example  –  someone  trying  to  lift  themselves  up  by  their  ankles  –  they  exert  an   upward  force  of  their  body  weight  on  their  ankles  but  their  ankles  are   exerting  that  same  force  of  their  body  mass  downwards  –  therefor  they  can’t   lift  themselves.       Fundamental  trouble  with  space  travel  is  that  you  have  to  bring  along   everything  with  you  –  the  more  mass  you  have  –  the  harder  it  is  to  accelerate.     The  rocket  exerts  a  force  on  the  heated  gas  and  the  heated  gas  exerts  a  force   back  on  the  rocket  –  but  the  fuel  is  accelerating  much  more  than  you  are   because  its  mass  is  so  much  less     Momentum p=mv   Momentum=  mass  times  velocity       Saying  essentially  the  same  thing  as  F=ma     Newton’s  laws  can  be  expressed  in  terms  of  momentum       Weight Weight  -­‐>  gravity   One  example  of  a  force   Usually,  W=mg   G=  acceleration  due  to  gravity  at  earth’s  surface=  9.8  m/s/s     The  difference  between  weight  and  mass  is  important  to  understand   Mass  –  how  much  an  object  is  resisting  change     Weight  –  how  hard  the  earth  is  pulling  on  you     60  kg  on  earth  and  you  go  to  the  moon  where  your  weight  is  1/6  of  that  on  the   moon.    Your  mass  will  still  be  60  kg  on  the  moon.    B ut  you  will  weigh  20  kg  on   the  moon.         Four  fundamental  forces  in  nature  (magnetic,  strong,  weak,  and  gravity)  but  in   astronomy,  gravity  is  by  far  the  most  important     Gravity:   Universal  Law  of  Gravitation  –   “Between  every  two  objects  there  is  an  attractive  force,  the  magnitude  of   which  is  directly  proportional  to  the  mass  of  each  object  and  inversely   proportional  to  the  square  of  the  distance  between  the  centers  of  the  objects.”     Newton’s  third  law  is  implicit  in  this       F g =G  M 1 M 2         d^2     D=  distance     Is  you  doubled  the  mass  of  object  two  (m2)  the  force  of  the  equation  is   doubled     If  you  doubled  the  distance  between  them  you  have  decreased  f  by  a  factor  of   4     You  feel  weightless  in  space  because  you  are  falling  –  falling  into  orbit   It’s  kind  of  like  jumping  out  of  an  airplane  where  you  feel  weightless  within   the  first  few  seconds     In  both  instances  you  are  falling  with  some  horizontal  velocity       When  you  drop  something  it  heads  towards  the  center  of  the  earth     Tides:   Gravitational  force  decreases  with  distance       The  moon’s  pull  on  earth  is  stronger  on  earth  on  the  side  facing  the   moon  and  weakest  on  the  opposite  side     The  earth  gets  stretched  along  the  earth  –  moon  line     Tides  are  an  application  to  the  universal  law  of  gravitation     Both  the  earth  and  the  moon  are  sort  of  falling  towards  each  other   –  which   means  they  both  want  to  stretch  along  the  line  that  connects  them   –  the   oceans  are  what  “stretch”         If  the  earth  and  moon  were  stagnant,  all  the  water  would  collect  on  one  side     2  high  tides  every  day  and  2  low  tides  every  day       Every  day  on  earth  passes  through  high  tide  twice  per  day  as  the  earth  rotates     High  tides  occur  every  12  hours  25  minutes     The  sun  produces  tides  on  the  earth  as  well    -­‐  it  is  much  less  important  to  tides   than  the  moon  is.    The  sun  is  so  far  away  that  the  difference  across  the  earth  is   kind  of  irrelevant       “Even  though  the  sun  pulls  harder  than  the  moon  the  difference  n  how   hard  it  pulls  on  different  parts  of  earth  is  small  because  it  is  so  distant”     Geography  also  plays  into  tides’  complications     Spring and Neap Tides   When  the  Sun  and  the  moon  pull  in  the  same  directions  (new  and  full  phases)   High  tide  is  higher  than  usual  (spring)  –  because  the  tides  seem  to  spring  way   up  from  being  very  low  to  very  high     When  the  sun  and  moon  pull  at  right  angles,  (first  and  last  quarter  phases)   high  tide  is  lower  than  usual  –  called  a  neap  tide)       Tidal Friction –   Remember  that  earth’s  bulges  want  to  face  towards  (and  away  from)   the   moon.    But  the  earth  is  spinning  and  obviously  the  oceans  are  attached  to  the   earth  so  they  have  to  spin  with  them.    So  there  is  this  fight  between  where  the   moon  wants  to  bulges  to  do  and  the  earth,  which  wants  to   drag  the  bulges   with  them.    This  causes  friction     This  fight  between  moon’s  pull  and  earth’s  rotation  causes  friction ^     Earth’s  rotation  slows  down  1  second  every  50,000  years  –  this  is  because  the   moon  moves  further  away  from  earth     Synchronous rotation ** need finished   Is  what  the  rotation  period  of  a  moon,  planet,  or  star  equals  its  orbital  period   about  another  object     Tidal  friction  the  moon  caused  by  earth  has  slowed  its  rotation  down  to  a   period  of  one  month       Conservation Laws   Momentum  =  mv       `Has  a  direction  because  it  is  a  vector     Angular  momentum  =  r  x  mv     Is  a  rotational  version  of  momentum  –  basically  the  momentum  of   things  going  in  a  circle       R  =  radius     Energy     Very  fine  law   Energy  comes  in  many  forms   Even  when  newton’s  laws  fail,  conservation  of  energy  holds     Acceleration  is  not  a  form  of  energy*     Various types of energy in the universe   Kinetic  –  kinetic  means  motion  so  the  faster  you’re  moving  the  more  energy   you  have     Potential energy   –  most  of  the  kinds  of  energy  we  see       Called  potential  because  it  has  the  potential  to  turn  into   kinetic  energy  if  you  do  the  right  thing     Gravitational  potential  energy   In  space,  an  object  or  gas  cloud  has  more  gravitational   energy  when  it  is  spread  out  then  when  it  contracts     A  contracting  cloud  converts  gravitational  potential  energy   in  the  form  of  thermal  energy       Chemical  –  energy  stored  within  the  bonds  of  molecules  –  like  how  we   consume  food  for  energy.    Same  thing  with  gasoline.    Energy  is  produced   by  breaking  those  bonds     Nuclear  –  energy  stored  in  the  nuclei  of  atoms.    Difficult  process  but  if   you  do  it  properly  you  can  release  large  amounts  of  energy       Radiative-­‐   Light  –  light  itself  is  energy         Total  orbital  energy  (gravitational  plus  kinetic)  stays   constant  if  there  is  no   external  force     Orbits  cannot  change  spontaneously     Changing an orbit:   For  example,  the  space  station  is  orbiting  around  the  earth  –  it  takes  about  an   hour  and  a  half  to  do  that     There  is  still  a  tiny  bit  of  thin  atmosphere  a  couple  hundred  miles  up  where  it   orbits.    The  atmospheric  molecules  hitting  the  thing  are  slowing  it  down.    So   occasionally  they  have  to  use  a  little  bit  of  internal  energy  to  stay  in  the  orbit   that  they  are  in.     What makes an object gain or lose orbital energy:   Friction  and  atmospheric  drag     A  gravitational  encounter     An  aside  on  temperature     It  is  a  measure  of  the  average  kinetic  energy  of  the  particles  in  a  thing     Temperature scales:   Fahrenheit  (bad)   Based  on  the  boiling  and  freezing  point  of  water  –  32  degrees  and  212   degrees     Celsius  (better)     It  also  uses  the  freezing  and  boiling  points  of  water  as  its  benchmark     Kelvin  (best)     Puts  zero  where  zero  should  be         The  reason  why  Celsius  and  Fahrenheit  are  bad  because  molecules  actually   can  reach  a  point  where  they  stop  moving  –  called  absolute  zero-­‐  so  there  is   an  absolute  minimum  –  which  is  not  the  case  with  Celsius  and  Fahrenheit       Light   Light  is  a  vibration  in  an  electromagnetic  field  through  which  energy  is   transported     Dual  Natures     Light  acts  as  a  wave           A  wave  is  very  different  than  a  particle  –  it  is  spread  out  is  space,  it  doesn’t   have  one  point  it  has  crests  and  troughs     If  you  want  a  water  wave  –  a  wave  in  the  ocean,  you  fundamentally  need   water.    A  water  wave  is  a  disruption  of  a  medium,  in  this  case  water.    The   same  is  said  with  a  slinky  –  there  is  a  disruption  in  the  slinky.     A  sound  wave  is  vibration  of  air  molecules  –  density/  pressure  wave  in  the  air.     Light  is  the  exception.    It  is  not  a  thing  that  is  vibrating,  because  it  is  a   wave  that  travels  without  a  medium.     Light  acts  as  a  wave  –  its  speed  is:    v  =  f  •  λ     But  the  speed  of  light  is  a  constant,  c     For  light,   f  •  λ  =  c   The  higher  f  is  the  smaller  λ  is  and  vice  versa     Our  eyes  recognize  f  as   color   Color  isn’t  a  real  thing  –  it’s  just  your  brain  interpreting  different  frequencies     Light  can  also  behave  as  a  particle   Light  can  also  be  treated  as  photons  –  packets  of  energy     The  energy  carried  by  each  photon  depends  on  its  frequency  (color)     E=hf    =  hc  /   λ     Light  acts  as  a  particle:     E=hf       Questions  frequently  missed  from  the  previous  exam   –     How  far  serius  moves  along  the  celestial  sphere  every  6  months   –  remember   that  stars  are  painted  on  the  celestial  sphere,  they  don’t  move.    The  sun,   however,  does.     Where  can  you  live  to  maximize  the  amount  of  light  each  day?     Anywhere  –  North  Pole  –  6  months  of  light,  6  months  of  dark   Equator  –  12  hours  of  light,  12  hours  of  dark…  so  6  months  of  light  and  6   months  of  dark     You  are  moving  faster  than  the  empire  state  building  if  you  are  in  Orlando   because  you  both  have  to  go  around  in  a  circle  every  day  but  your  circle  i s   bigger  because  you  are  closer  to  the  equator     Galaxy  with  the  youngest  appearance  –     You  are  seeing  light  that  has  already  passed  when  you  look  at  galaxies.     The  youngest  appearance  would  be  the  one  that  is  furthest  away  –   because  that  means  it  has  taken  more  time  for  light  to  travel  so  the  light   we  see  would  be  considered  younger  –  say  4  billion  years  old  rather   than  2  million  years  old.           The Electromagnetic Spectrum:   Oselating  electromagnetic  fields;  It  is  all  light  and  all  travels  at  exactly  the   same  speed  the  only  difference  is  frequencies  of  wavelengths     Blue  and  violet  on  the  high  frequency  end  and  red  on  the  low  frequency  end     In  the  lower  frequency  end  of  things  –  lower  meaning  that  each  photon  has  less   energy  and  the  wavelength  is  longer  …  lots  of  things  give  off   infrared.     (goggles  allow  us  to  see  it)     We  see  people  and  things  because  light  is  reflecting  off  of  them.    If  we  went   into  a  dark  room,  we  couldn’t  see  anything  or  anyone,  but  people  are  still   giving  off  light.    Any  object  with  a  temp  above  zero  gives  off  radiation.    –   But  our  eyes  don’t  pick  that  up.     Night  vision  goggles  –  just  amplify  small  amount  of  visible  light  that  is  there   and  then  infrared  goggles  work  because  warm  things  give  off  of  light.     Longer  wavelength  and  lower  frequency  are  microwaves  and  radio   waves.     Billions  and  billions  of  radio  wave  photons  passing  through  you   –  but  it  is  so   low  energy  that  it  cant  do  anything  to  you.     We  can  use  these  for  communication     On  the  opposite  end  of  the  spectrum  –       Ultraviolet  is  higher  frequency  than  you  can  see.    Sunburns  are  caused  by  UV   light.    It  has  higher  frequency,  which  means  that  it  can  do  more  damage.     X-­‐rays  and  gamma  rays  have  extremely  high  frequency  within  the  photons   X-­‐rays  break  bonds  and  can  cause  issues     Gamma  rays  –  even  higher  frequency-­‐  energy  of  photons  is  very,  very  high.    No   natural  processes  on  earth  produce  gamma  rays  other  than  nuclear   explosions.     But  there  are  gamma  rays  in  space.     How  light  and  matter  interact  –     Matter   The  nature  of  matter     Matter  is  what  most  of  the  universe  is  made  up  of.         Matter  is  made  up  of  atoms.    They  used  to  be  thought  of  as  the  fundamental   unit  of  everything.         Pieces  of  the  atom  are  the  nucleus,  which  is  made  of  protons  (positively   charged)  and  neutrons  (neutral)  and  they  are  surrounded  by  electrons,  which   are  negatively  charged.     The  electrons  do  not  orbit  the  nucleus     The  nucleus  is  nearly  100,000  times  smaller  than  the  atom  but  contains  nearly   all  of  its  mass     Electrons  are  smeared  out  in  a  cloud  around  the  nucleus   Periodic Table   All  of  the  ways  to  make  elements  –     Atomic  number  =  #  of  protons  in  the  nucleus  of  that  atom   Atomic  mass  number  =  #  of  protons  +  #  of  neutrons       Hydrogen  –  the  simplest  thing  and  almost  everything  in  the  universe  is   hydrogen  (like  70%)     Atomic  number  1  and  atomic  mass  of  1   (1  proton)         Helium  –  atomic  number  2  and  atomic  mass  number  4   So  two  protons,  two  neutrons  in  the  nucleus,  and  two  electrons     Isotope  –  a  version  of  the  element  with  a  different  number  of  neutrons     For  example,  a  hydrogen  atom  with  a  neutron   If  two  or  more  atoms  combine  to  form  a  particle  it  becomes  a   molecule   The  atoms  form  bonds-­‐  think  of  water  –  h20  –  consists  of  two  hydrogen’s  and   one  oxygen       Phases of Matter –   Solid,  liquid,  gas,  plasma     Depends  on  how  tightly  bound  the  atoms  and/or  the  molecules  are     As  temp  increases  these  bonds  are  loosened     Solid  phase-­‐     Atoms  or  molecules  are  held  tightly  in  place  –  the  bonds  are  very  strong   (Lets  pretend  its  ice)     If  you  heat  it  up  you  are  giving  it  more  energy  and  breaking  those  bonds   because  things  are  moving  faster     When  you  break  those  bonds  it  becomes  a   liquid  with  groups  of  bonds  and   things  can  move  around     If  you  heat  it  up  even  more  you  eventually  break  every  one  of  those  bonds  and   it  becomes  a   gas  -­‐  steam     If  you  heat  it  up  even  more  it  becomes  a  gas  of  just  oxygen  and  hydrogen     If  you  heat  it  up  even  more  you  have  broken  all  of  the  bonds  and  have  started   stripping  electrons  away  –  the  difference  is  that  its  charged  things  –  ions  and   electrons  flying  around  rather  than  just  neutral  things.    This  is   plasma.         Ex:  Plasma  TV  –  flames  and  lightning  –  you  don’t  see  it  all  the  time  because  the   temp  needs  to  be  really  high  and  you  need  a  lot  of  energy  to  strip  electrons  off   of  stuff.         Electron Orbits   Electrons  gain  or  lose  energy  while  they  orbit  the  nucleus     Some  rules  for  the  amount  of  energy  that  the  electron  can  have   1. There  is  a  minimum  amount  of  energy  that  the  electron  can   have  –  and  it  likes  to  be  in  that  state  –  that  minimum  amount  is   called  the  ground  state.    It  can’t  wander  very  far  away  from  the   proton  because  it  is  not  moving  very  fast.     2. Electrons  may  only  gain  or  lose  certain,  specific  amounts  of   energy     3. Each  element  (atom  and  ion)  has  its  own  distinctive  set  or   pattern  of  energy  levels     4. The  diagram  in  the  notes  depicts  energy  levels  of  hydrogen     5. You  can  give  it  10.2  units  of  energy  so  it  can  get  from  its   ground  state  of  zero  to  10.2  but  it  can  ONLY  go  to  10.2  and   nothing  in  between.    Not  5  not  7.8,  only  10.2     When  electrons  have  the  lowest  energy  possible  we  say  the  atom  is  in  the   ground  state     When  electrons  have  more  energy  than  this,  we  say  the  atom  is  in  an   excited   state     It  is  moving  a  little  farther  away  from  the  nucleus     When  electrons  gain  enough  energy  to  escape  the  nucleus,  we  say  the  atoms   are   ionized.       Too  much  energy  –  the  electron  can  just  completely  break  off  from   the  atom  and  this  is  the   plasma  state.         Light  conveys  information:     By  studying  an  object’s  light  spectrum,  we  can  gather  its  composition,   temperature,  and  velocity     Interaction of light with matter   Electrons  can   Absorb  light  and  gain  energy  or   Emit  light  when  they  lose  energy.       Only  photons  whose  energies  (colors)  match  the  “jump”  in  electron  energy   levels  can  be  emitted  or  absorbed     Emission Spectrum   The  atoms  of  each  element  have  their  own  distinctive  set  of  electron   energy  levels.     Each  element  emits  its  own  pattern  of  colors,  like  fingerprints.     If  it  is  a  hot  gas,  we  see  only  these  colors,  called  an   emission  line   spectrum.     Absorption spectrum   If  light  shines  through  a  gas,  each  element  will  absorb  photons  whose  colors   match  their  electron  energy  levels     The  resulting  absorption  line  spectrum  has  all  colors  minus  those  that  were   absorbed.     We  can  determine  which  elements  are  present  in  an  object  by  identifying   emission  &  absorption  lines.     Continuous spectrum   –  hot,  dense  objects  give  off  wavelengths     Something  called,  “thermal  radiation”     Spectrum  is  continuous  but  not  equal  in  intensity  at  all  wavelengths     The  hotter  something  is  the  more  light  it  gives  off     Rules for emission by opaque objects   If  you  analyze  the  spectrum  of  light  coming  from  a  thing  that  means  you  can   also  gage  its  temperature   1. Hotter  objects  emit  more  total  radiation  per  unit  surface  area .   Ø Stephan-­‐Boltzmann  Law   Hotter  objects  emit  bluer  photons  (with  a  higher  average  energy.)   Ø Wien’s  Law       If  you  look  at  the  sun  you  are  going  to  see  a  very  complicated  absorption   spectrum     Even  more  complicated  when  looking  at  an  asteroid       3 things we can measure with the spectrum of light   The Doppler Effect – Light  emitted  from  an  object  moving  towards  you  will  have  its  wavelength   shortened     Blue Shift- Light  emitted  from  an  object  moving  away  from  you  will  have  its  wavelength   lengthened     We  see  a  blue  shift  with  the  Andromeda  galaxy   –  which  means  eventually  we   will  crash  into  it       Red shift –   light  emitted  from  an  object  moving  perpendicular  to  your  line  of   sight  will  not  be  shifted     You  cant  determine  if  its  moving  perpendicular  to  your  line  of  sight     The  further  away  a  thing  is  the  slower  it  appears  to  move  in  relation  to  you     For  sound  frequency  corresponds  to  pitch   For  light  frequency  corresponds  to  color       Motion  and  velocity  are  relative     Bending  light   2 fundamental ways to bend light   1. Reflection  –  mirrors  –  many  telescopes  use  mirrors  to  bend  light   2. Refraction  –  lenses  –  you  can  use  shaped  glass  to  make  the  light  go   where  you  want  it.         Focus  –  to  bend  all  light  waves  coming  from  the  same  direction  to  a  single   point    -­‐  light  rays,  which  come  from  different  directions  coverage  at  different   points  to  form  an  image     Yerkes  40  inch  telescope  –  the  largest  refractor  in  the  world     Telescope troubles   One  problem  you  might  have  is  you  may  build  the  shape  wrong.    The  outer   part  of  the  lens  has  to  be  a  parabola       If  it  is  shaped  wrong  it  wont  focus  –  called  spherical  aberration     Refractors  only  –     Chromatic  aberration   Sagging  –  glass  is  supported  around  the  edges  so  it  can  sag  in  the  middle     Inhomogeneties  –  fancy  word  for  impurities       We  use  telescopes  to  see  smaller  details  and     1. Resolution  –  smallest  angle  which  can  be  seen   a. Resolving  finer  and  finer  detail  on  something  –  so  you  can  see   individual  craters  and  mountains     2. Light  collecting  area  –  think  of  the  telescope  as  a  photon  bucket                                


Buy Material

Are you sure you want to buy this material for

25 Karma

Buy Material

BOOM! Enjoy Your Free Notes!

We've added these Notes to your profile, click here to view them now.


You're already Subscribed!

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

Why people love StudySoup

Bentley McCaw University of Florida

"I was shooting for a perfect 4.0 GPA this semester. Having StudySoup as a study aid was critical to helping me achieve my goal...and I nailed it!"

Jennifer McGill UCSF Med School

"Selling my MCAT study guides and notes has been a great source of side revenue while I'm in school. Some months I'm making over $500! Plus, it makes me happy knowing that I'm helping future med students with their MCAT."

Jim McGreen Ohio University

"Knowing I can count on the Elite Notetaker in my class allows me to focus on what the professor is saying instead of just scribbling notes the whole time and falling behind."

Parker Thompson 500 Startups

"It's a great way for students to improve their educational experience and it seemed like a product that everybody wants, so all the people participating are winning."

Become an Elite Notetaker and start selling your notes online!

Refund Policy


All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email


StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here:

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to

Satisfaction Guarantee: If you’re not satisfied with your subscription, you can contact us for further help. Contact must be made within 3 business days of your subscription purchase and your refund request will be subject for review.

Please Note: Refunds can never be provided more than 30 days after the initial purchase date regardless of your activity on the site.