×

### Let's log you in.

or

Don't have a StudySoup account? Create one here!

×

or

## MATH 200 Lecture Notes, Week 1

by: spencer.kociba

32

3

7

# MATH 200 Lecture Notes, Week 1 Math 200

Marketplace > Drexel University > Math > Math 200 > MATH 200 Lecture Notes Week 1
spencer.kociba
Drexel

Enter your email below and we will instantly email you these Notes for Multivariate Calculus

(Limited time offer)

Unlock FREE Class Notes

Everyone needs better class notes. Enter your email and we will send you notes for this class for free.

Summary of Week 1: Introduction to 3-space, vectors, vector operations (including dot product and cross product computations). *NOTE: Section MATH 200-005 is slightly behind the other classes for ...
COURSE
Multivariate Calculus
PROF.
TYPE
Class Notes
PAGES
7
WORDS
CONCEPTS
Math, Calculus, multivariable calculus, vectors, graphing multivariable functions in three dimension
KARMA
Free

## Popular in Math

This 7 page Class Notes was uploaded by spencer.kociba on Sunday October 2, 2016. The Class Notes belongs to Math 200 at Drexel University taught by in Summer 2016. Since its upload, it has received 32 views. For similar materials see Multivariate Calculus in Math at Drexel University.

×

## Reviews for MATH 200 Lecture Notes, Week 1

×

×

### What is Karma?

#### You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 10/02/16
MATH 200­005  Spencer Kociba Summary of Week 1: Introduction to 3­space, vectors, vector operations (including dot  product and cross product computations). *NOTE: Section MATH 200­005 is slightly behind the other classes for reasons unknown.  These are those notes for that section with Prof. Matt Ziemke. http://www.math.drexel.edu/classes/math200/201615/ ^where you will find the syllabus, homework, homework answers and announcements Prof. Matt Ziemke mjz55@drexel.edu Office Hours M­W, 2­3pm in Math Resource Center (Korman 249) Thurs, 2­3 in office (Korman 253) ­no required textbook, recommended one is Calculus: Early Transcendentals 10th Edition by Anton, Biven, and Davis John Wiley & Sons, 2009 ^most calc books will cover the same material in a similar order MATH 200­005  Lecture notes 09/19/2016 Spencer Kociba Multi­variable functions= functions with more than two variables Ex. f(x,y)=z; f(t)=(x,y); f(x,y,t)=z Chapter 11.1: Rectangular coordinates in 3­space, spheres, cylindrical surfaces “Euclidean 3­space’ is the graph used to portray planes, lines  and points in the 3rd dimension Ex. ***think of it like looking into the corner of a room*** “Floor” = xy­plane “Right wall” = yz­plane “Left wall” = xz­plane “Inside the room” = the first octant P= (a,b,c) = (x,y,z) **the negative axis values go “behind” or to the other side of the origin  (the axis lines extend both directions infinitely but it is easier to show the positive axes in 3­space. The negative are usually drawn using dotted or dashed lines) ­The distance, d, between the points P= (x❑ ,0y❑ ,0z❑ ) 0  and Q= (x❑ ,1y❑ ,1z❑ ) 1 is  given by d= ❑ Ex. Find d of P=(1,2,3) and Q=(0,­2,1) d= ❑ √ ❑ Sphere: a center “C=(a,b,c)” and radius “r” is the set of all points’ distances to C is r (aka all  points in 3space with a distance to C is r) d= ❑ Any point on the surface of a sphere to the center d=r 2 2 2 2 Formula:  r =(x❑ −x❑ )❑ +Cy❑ −y❑ )❑ +❑z❑ −zC )❑ ❑ C or 2 2 2 2 r =(x❑ −❑)❑ +(y❑ −b)❑ +❑z❑ −c)❑ ❑ **converse of pythagorean theorem: If  a +b =c 2  then triangle ABC must be a right  triangle MATH 200­005  Lecture notes 09/20/2016 Spencer Kociba Chapter 11.1: Rectangular coordinates in 3­space, spheres, cylindrical surfaces (cont) ­The midpoints between A= (x❑ ,0❑ ,z0 ) 0  and B= (x❑ 1y❑ ,z1 ) 1  is x❑ +0❑ 1 y❑ +0❑ 1 z❑ +0❑ 1 , , ( 2 2 2 ) Cylindrical Surface: a graph (in 3­space) of an equation with only 2 variables that is  projected all along the 3rd remaining variable’s axis Chapter 11.2: Vectors Vector: something with both direction and magnitude (most common is angle and  displacement, but these two components can be a multitude of things) Name: vector “v” or  vector AB (which is not equal to vector BA) A=initial point B=terminal point **any real number (not  ) used with vectors is  i∨ j known as a scalar  Two vectors are equal (v=w) if they have the same  length/magnitude and point in the same direction (aka POSITION  is NOT important) Zero vector: (0) the vector with no length (geometrically it  is a dot). Initial point=terminal point Vector Operations Sum: v+w=w+v  v+0=v=0+v Scalar multiplication: (scalar)*v= length*k (the direction depends on the sign of k) ^^stretch or shrink or change direction of the vector Notation:      || v || = the length or magnitude of vector v (can also put different operations of vectors in  there like || v+u || ) () indicates a point  <> indicates a vector (aka bracket notation) MATH 200­005  Lecture notes 09/21/2016 Spencer Kociba Chapter 11.2: Vectors (cont) ● 0*v=0 ● k*v=0 when v=0 ● (­1)v= ­v ; (­2)v= ­2v Subtraction:    v­w=v+(­w)     initial points are the same and you find the vector between v  and w or you change the direction by multiplying w by ­1  and take the sum  of those vectors or If vector v starts at the origin, then v= the terminal points in bracket notation= ¿v❑ ,v❑ >¿ 1 2 Vectors in Component Form For vectors v=  ¿v❑ ,1❑ >¿2  and w=  ¿w❑ ,w1 >¿ 2 , v=w ONLY if v❑ 1w❑ ∧v❑1=w❑ 2 2 k*v=  ¿kv❑ ,1v❑ >¿ 2 Component form (if initial point is NOT at the origin): v= < (x❑ 1x❑ ) 0 ,  (y❑ −2❑ ) 1 > Theorem: For any vectors u, v and w and any scalars k and l the following is true (i) u+v=v+u (ii) (u+v)+w=u+(v+w) (iii) u+0=0+u (iv) u+(­u)=0 (v) k(lu)=(kl)u (vi) k(u+v)=ku+kv (vii) (k+l)u=ku+lu (viii) 1u=u 2 v❑ ¿2 2 v❑ 1 +¿ 2 ¿∨v∨¿ =¿ ¿∨kv∨¿=(k)∗¿∨v∨¿=¿∨¿kv❑ ,kv❑ >¿∨¿ ❑ √ 1 2 ❑ Unit Vectors: Vectors that have a magnitude of 1 Ex. if v is a vector, find the unit vector u 1 u= ¿∨v∨¿ ∗v   (reciprocal of the norm of v (results in scalar) multiplied by v) Ex. v=<3,5>; ||v||=6 u= ∗¿3,5>¿< , >¿1 5 6 2 6 2 space unit vectors: i=<1,0> and j=<0,1> 3 space unit vectors: i=<1,0,0> ; j=<0,1,0> and k=<0,0,1> MATH 200­005  Lecture notes 09/22/2016 Spencer Kociba Chapter 11.2: Vectors (cont) If v is a non zero vector then  1 ∗v  = a unit vector that points in the same  ¿∨v∨¿ direction as v ^^this process is referred to as normalizing the vector v=¿∨v∨¿∗¿cosθ,sinθ>¿   θ = angle with the x axis (in 2 space)

×

×

### BOOM! Enjoy Your Free Notes!

×

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

## Why people love StudySoup

Steve Martinelli UC Los Angeles

#### "There's no way I would have passed my Organic Chemistry class this semester without the notes and study guides I got from StudySoup."

Janice Dongeun University of Washington

#### "I used the money I made selling my notes & study guides to pay for spring break in Olympia, Washington...which was Sweet!"

Jim McGreen Ohio University

#### "Knowing I can count on the Elite Notetaker in my class allows me to focus on what the professor is saying instead of just scribbling notes the whole time and falling behind."

Parker Thompson 500 Startups

#### "It's a great way for students to improve their educational experience and it seemed like a product that everybody wants, so all the people participating are winning."

Become an Elite Notetaker and start selling your notes online!
×

### Refund Policy

#### STUDYSOUP CANCELLATION POLICY

All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email support@studysoup.com

#### STUDYSOUP REFUND POLICY

StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here: support@studysoup.com

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to support@studysoup.com