New User Special Price Expires in

Let's log you in.

Sign in with Facebook


Don't have a StudySoup account? Create one here!


Create a StudySoup account

Be part of our community, it's free to join!

Sign up with Facebook


Create your account
By creating an account you agree to StudySoup's terms and conditions and privacy policy

Already have a StudySoup account? Login here

Astronomy Week 6 Notes

by: Jenna Notetaker

Astronomy Week 6 Notes ASTR 1000-002

Jenna Notetaker

GPA 4.0

Preview These Notes for FREE

Get a free preview of these Notes, just enter your email below.

Unlock Preview
Unlock Preview

Preview these materials now for free

Why put in your email? Get access to more of this material and other relevant free materials for your school

View Preview

About this Document

planetary objects and motion
The Solar System (Lecture)
Charles Danforth
Class Notes
25 ?




Popular in The Solar System (Lecture)

Popular in Astronomy and Physics

This 6 page Class Notes was uploaded by Jenna Notetaker on Tuesday October 4, 2016. The Class Notes belongs to ASTR 1000-002 at University of Colorado at Boulder taught by Charles Danforth in Fall 2016. Since its upload, it has received 6 views. For similar materials see The Solar System (Lecture) in Astronomy and Physics at University of Colorado at Boulder.

Similar to ASTR 1000-002 at

Popular in Astronomy and Physics


Reviews for Astronomy Week 6 Notes


Report this Material


What is Karma?


Karma is the currency of StudySoup.

You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 10/04/16
Astronomy Week 6 Comparative Planetology ­ patterns and trends in the solar system are most important  Sun  99.8% of mass in SS  Mostly H and He,  Traces of other elements  Nuclear fusion in core is source of energy Light comes from photosphere (“surface”)  Relative sizes:  Sun is 10x diameter of Jupiter  Jupiter is 10x diameter of Earth Earth is 10x diameter of Pluto  10x diameter = 103 =1000x volume = 1000x more massive (very approximately)  SS pattern #1: Orderly Motion ­­ All large bodies are in nearly circular orbits, in nearly the same  plane (the ecliptic), in the same direction (counter­clockwise when viewed from the north).   Rotation and moon orbits also CCW.  Mercury  Looks like the Moon because it is like the Moon.   No atmosphere, many craters  Rock and metal, large iron core,  Rotates 3x for every 2 orbits (tidal locking w/ Sun).   Very hot day side, very cold night side.  Venus  Nearly identical to Earth in size, composition  Surface hidden by clouds  Extreme greenhouse effect (even hotter than Mercury)  Spins backwards (very slowly)  Earth/Moon  Similar in size/composition to Venus  Only planet with liquid water on surface  Only planet with life (that we know of)  Surprisingly large moon  Mars  1.4 AU.  About half size of Earth  Thin atmosphere, giant volcanos, canyons, polar ice caps  Once had liquid water (river channels, layered rocks, shorelines)  Most­studied planet (7 current missions)  Two tiny moons (captured asteroids)  Asteroids  Fill gap 2­4 AU from Sun between Mars and Jupiter  Failed planet?  Orbits not uniform, planar, circular  A few large ones, millions of tiny ones, largest is Ceres (about 1/3rd of the mass)  Jupiter  300x mass of Earth  5 AU from sun (much farther than inner planets)  Mostly H and He gas (no solid surface)  Many moons and rings  Huge storms and cloud bands  Galilean moons (Io, Europa, Ganymede, Callisto) almost planets on their own Saturn  Gas giant like Jupiter (10 AU from Sun, 90x mass of Earth)  Spectacular rings from tidal disruption event, many moons Titan has thick atmosphere, hydrocarbon lakes, rivers, clouds  Uranus   20 AU  First new planet (discovered 1781)  Much smaller than J/S but still 15x mass of Earth  H/He gas, but also water, ammonia, methane, etc. (“ice giant”)  Extreme axis tilt (980)  Neptune  30 AU  Discovered 1846  Very similar to Uranus in size, composition  Large moon Triton orbits backwards (captured KBO?)  SS Pattern #2: two (three?) kinds of planets Terrestrial (rocky) planets ­ small, rocky, close to  sun, no moons (mostly) Jovian (gas giant) planets ­ large, gas balls, far from sun, many moons,  rings ! [KBOs (ice balls) ­ very small, icy objects like Pluto far from Sun] Pluto  30­40 AU (1930)  Elliptical, inclined orbit (not part of orderly motion)  Not a gas giant nor a terrestrial planet ­ something new?  Moon Charon is very large  First, largest member of the Kuiper Belt  Comets  Small bodies like asteroids, but mostly made of ices  Appear in inner SS occasionally but mostly reside in outer SS Some are from Kuiper Belt, some are from farther out  Oort Cloud 100­100,000 AU from Sun  SS Pattern #3: two kinds of small bodies (rocky, icy) in three different zones (asteroid belt,  Kuiper belt, Oort cloud)  SS Pattern #4: exceptions to all the rules Orbits: Triton (backwards), small bodies (elliptical,  inclined) Rotations: Venus (backwards), Uranus, Pluto (sideways) Moons: Charon, Moon  (relatively big); Titan (thick atmosphere)  Our theory of SS formation must be able to account for all four of these patterns All things orbit the same direction and relatively circular orbits There are Jovian and terrestrial planets and Kuiper belt objects (planetoids) Pluto is not a planet because there are too many objects similar to Pluto  The International Astronomical Union names planetary objects  Planets  Orbit the Sun Big enough so that its spherical  Cleared its orbit Cleared orbit­ there are no other larger objects that share the orbit Dwarf Planets Orbit the Sun Big enough to be spherical Has not cleared its orbit  Comets­ small icy objects and have very elliptical orbits  Oort cloud­ not observed but inferred  Oort clouds from other stars my overlap The number of protons in an atom determines what the element is  The universe is composed of 90% hydrogen, 8% helium, and 2% everything else The big bang dispersed hydrogen and helium  The other 2% was made in the cores of stars  Stars come in different masses  The Sun produces hydrogen and helium  Massive stars create: H       He       C, N, O        Ne     …        Fe Fe (iron) cannot burn so when the star gets an iron core it explodes to form a supernova  Galactic recycling­ the cycle all stars go through  Star formation­ observing many stars to find the pattern between all of them  Nebula cloud condenses into a star  Nebular theory Gas cloud compresses Gravity cause nebula to contract, heat, and spin Flattens into a disk Collisions between particles average out motions and orbits  Protoplanetary disk Uniform circular motion Everything is moving very slowly with respect to each other  Particles remain close for a long time 


Buy Material

Are you sure you want to buy this material for

25 Karma

Buy Material

BOOM! Enjoy Your Free Notes!

We've added these Notes to your profile, click here to view them now.


You're already Subscribed!

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

Why people love StudySoup

Jim McGreen Ohio University

"Knowing I can count on the Elite Notetaker in my class allows me to focus on what the professor is saying instead of just scribbling notes the whole time and falling behind."

Janice Dongeun University of Washington

"I used the money I made selling my notes & study guides to pay for spring break in Olympia, Washington...which was Sweet!"

Bentley McCaw University of Florida

"I was shooting for a perfect 4.0 GPA this semester. Having StudySoup as a study aid was critical to helping me achieve my goal...and I nailed it!"

Parker Thompson 500 Startups

"It's a great way for students to improve their educational experience and it seemed like a product that everybody wants, so all the people participating are winning."

Become an Elite Notetaker and start selling your notes online!

Refund Policy


All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email


StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here:

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to

Satisfaction Guarantee: If you’re not satisfied with your subscription, you can contact us for further help. Contact must be made within 3 business days of your subscription purchase and your refund request will be subject for review.

Please Note: Refunds can never be provided more than 30 days after the initial purchase date regardless of your activity on the site.