New User Special Price Expires in

Let's log you in.

Sign in with Facebook


Don't have a StudySoup account? Create one here!


Create a StudySoup account

Be part of our community, it's free to join!

Sign up with Facebook


Create your account
By creating an account you agree to StudySoup's terms and conditions and privacy policy

Already have a StudySoup account? Login here

CHapter 7 BIology I MY notes

by: Marla Notetaker

CHapter 7 BIology I MY notes BSC 2010

Marketplace > University of South Florida > Biology > BSC 2010 > CHapter 7 BIology I MY notes
Marla Notetaker

Preview These Notes for FREE

Get a free preview of these Notes, just enter your email below.

Unlock Preview
Unlock Preview

Preview these materials now for free

Why put in your email? Get access to more of this material and other relevant free materials for your school

View Preview

About this Document

What we did about membrane proteins
Cellular processes
Dr Daniel
Class Notes
membrane, Proteins, passive transport, active transport, Sodium/Potassium-pump, gradient, transport
25 ?




Popular in Cellular processes

Popular in Biology

This 5 page Class Notes was uploaded by Marla Notetaker on Saturday October 8, 2016. The Class Notes belongs to BSC 2010 at University of South Florida taught by Dr Daniel in Summer 2015. Since its upload, it has received 18 views. For similar materials see Cellular processes in Biology at University of South Florida.


Reviews for CHapter 7 BIology I MY notes


Report this Material


What is Karma?


Karma is the currency of StudySoup.

You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 10/08/16
Chapter 7 – Membrane Structure and Function Yellow: Vocabulary GREE: Key concepts  Selective permeability: “allows some substances to cross it more easily than others”  Aquaporins: proteins that allow water (polar molecule) to pass through the tails (non­polar)          sections of the phospholipid bilayer of the cell. Concept 7.1  Amphipathic: has a hydrophilic (likes water – polar head) and hydrophobic (does not like water –            non­polar tail) part.  Most proteins are also amphipathic; their hydrophobic part within the membrane and the  hydrophilic portion beyond the border of the membrane with the hydrophilic part  Fluid mosaic model: sketch of how the membrane and its surrounding looks like. I. The Fluidity of Membranes  The lipids are much easier to move horizontally than vertically  SOMETIMES then may flip­flop… the lipid on the top layer switches to the  later on the bottom.  SOMETIMES proteins shift laterally along the membrane, however they are  larger than phospholipids and its harder, plus they are most likely attached to  the cytoskeleton of the cell  Fluidity of the membrane: o Lower temperatures:  Fluid until the phospholipids are TOO close together and  they move very slowly (solidification) making the layer  viscous – this solidification depends on the “type of lipid it is made of”  Much more fluid if the tails (hydrophobic) portions of the  phospholipids are UNsaturated (one of the legs is bended)  because this “bend” separates them and allows movement o Cholesterol (in animal cells):  If temperature is HIGH… slows the movement by sticking in the middle it’s not TOO fluid  If temperature is LOW…makes space between the  phospholipids, enough for them NOT stop moving  “The fluidity of the membrane affects both its permeability and the ability  of membrane proteins to move to where their function is needed” II. Membrane protein and their function  The proteins within the membrane determine its function  Types of proteins: o Integral proteins: Get INTO the hydrophobic portion (tails)  Transmembrane: go from SIDE TO SIDE… all the way though  Usually they are bonded by α helices o Peripheral proteins: they are “leaning” on the top/bottom of the membrane  Don’t directly are In the membrane but interact with the proteins  that ARE in the membrane  Functions of the membrane proteins: o Transport o Enzymatic activity o Signal transduction: the outside of the enzyme receives a signal and  passes it to the inside. o Cell­cell recognition: to identify our own cells o Intercellular joining: junctions, hook cells together o Attachment of the cytoskeleton and the extracellular matrix (ECM)  Page 128 with HIV topic – absence of CCR5 creates sort of immunity III. The Role of Membrane Carbohydrates in Cell­cell recognition  Important for “sorting of cells into tissues and organs in an animal embryo.  Identify which are our own cells  Glycolipids: covalent bonds between short carbohydrates (about 15) and lipids  Glycoproteins: covalent bonds between carbohydrates and proteins (most of       the membrane carbohydrates)  When referring blood (A,B,O,AB) the change is due to “variations in the  carbohydrate part of the glycoproteins on the surface of red blood cells” IV. Synthesis and Sidedness of Membranes  Membranes have specific orientations  ^ this depends on how they are assembled by the ER and GA Concept 7.2 I. The Permeability of the Lipid Bilayer  Hydrophobic (non­polar): Hydrocarbons and others, can cross easily the tails     of the bilayer because those are also non­polar  Hydrophilic (polar): the heads of the bilayer does not allow for direct   communication between the outside and the inside   because they are separated by the non­polar portion.  These polar molecules can pass very slowly or with other type of aid II. Transport Proteins  Channel Proteins: Hydrophilic (most likely) proteins that go from one end to     the other of the membrane and can carry hydrophilic     molecules in and out of the cell (like a tunnel) o Aquaporin: example of channel protein to transport water  Carrier Proteins: Takes the molecule inside it and it changes its shape and    moves it along, through it (like squeezing toothpaste)  Transport proteins are VERY specific in what they transport Concept 7.3  Cells have thermal energy: movement of particles inside the cell  Diffusion: when PARTICLES move through the space, eventually to reach dynamic equilibrium  Concentration gradient: move from areas of high concentration to low concentrations  Passive transport: diffusion should not require energy I. Effects of Osmosis on Water Balance  Osmosis: movement of WATER across a semipermeable membrane a. Water Balance of Cells Without Cell Walls  Tonicity: ability of the cell to gain or lose water. o Depends on the concentration of the solute and its composition  Everything depends on the POINT OF VIEW YOU ADOPT… usually is the solution’s point of view and NOT the cell  Type of solutions: o Isotonic: the solution has the same amount of solute concentration as    the inside of the cell… water does not move at all o Hypertonic: the solution has MORE solute concentration than the  cell… cell will LOSE water o Hypotonic: the solution has LESS solute concentration than the cell… cell will GAIN water  Osmoregulation: control of water movement b. Water Balance of Cells Cell Walls  Turgor pressure: because the cell wall is not very flexible when the cell swells         with too much water the cell wall applies back pressure          which does not allow it to take in more water  States of plant cell in regards to water volume: o Turgid: the plant cell has the maximum amount of water, which is the  best for it o Flaccid: when there is no water coming in or out o Plasmolysis: when the cell does not have enough water and the plasma   membrane disjoins the cell wall. II. Facilitated Diffusion: Passive Transport Aided by Proteins  Facilitated diffusion: when a protein is used to pass the chemical  Move DOWN the concentration gradient  Channel proteins: o Ions channels: transport ions   Gate channels: “open/close in response to stimuli”  Electrical stimuli: Neurons  “Specific” channels: only open/close when something specific   binds to it (besides the actual chemical   needing transportation)  o Carrier proteins: the chemical somehow “changes” the shape of the   protein until it transports the chemical to the other side Concept 7.4  Particles moves AGAINST the concentration gradient (from low to high)   This requires energy… most likely ATP I. The Need for Energy in Active Transport  Active transport: requires energy  Most of the proteins that do this are CARRIER proteins… because they  SELECT what chemicals to send.  Know the sodium­potassium pump… its explained in details and with pictures  on p. 135 of the USF version of the Bio I book II. How Ion Pumps Maintain Membrane Potential  Membrane potential: the different electrical charge of the cell and its   surrounding… the inside of the cell should be more   negative (­50 ­ ­200 millivolts (mV))  Movement of ions: o “ Because the inside of the cell is negative compared with the outside,  the membrane potential favors the passive transport of cations into the  cell and anions out if the cell” (p.135) – Electrical Gradient o Factors for ion diffusion:  Type of chemical/concentration of it  Electrical charge  Electrogenic Pump: “transport protein that generates voltage across the membrane o Sodium – potassium pump: so far the strongest electrogenic pump in  animal cells o Proton pump: so far the strongest electrogenic pump in plants, fungi, and  +    Bacteria – moves H  out of the cells – ATP synthesis III. Cotransport  When a protein take one chemical into the cell and another out at the same time Concept 7.5  When particles are way too big to be moves through the regular proteins vesicles are created to transport  this “bulk’ I. Exocytosis  Movement of this “bulk” OUTSIDE the cell II. Endocytosis  Movement of this “bulk” INSIDE the cell  Steps: o The plasma membrane makes a small pocket inward and stretches out o When it stretches it surrounds what is needed to bring inside and it  pinches, closing up the space and forming a vesicle o Pulls vesicle inside  Types of Endocytosis o Phagocytosis: membrane stretches OUT and surrounds the “food” which a    lysosome will digest later. o Pinocytosis: invagination (dip IN) of the membrane creating a coated   vesicle and fuse with lysosome o Receptor – Mediated Endocytosis: kind of like pinocytosis but this one  has receptors inside and the chemicals (Ligands) bind to this receptors.


Buy Material

Are you sure you want to buy this material for

25 Karma

Buy Material

BOOM! Enjoy Your Free Notes!

We've added these Notes to your profile, click here to view them now.


You're already Subscribed!

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

Why people love StudySoup

Steve Martinelli UC Los Angeles

"There's no way I would have passed my Organic Chemistry class this semester without the notes and study guides I got from StudySoup."

Allison Fischer University of Alabama

"I signed up to be an Elite Notetaker with 2 of my sorority sisters this semester. We just posted our notes weekly and were each making over $600 per month. I LOVE StudySoup!"

Bentley McCaw University of Florida

"I was shooting for a perfect 4.0 GPA this semester. Having StudySoup as a study aid was critical to helping me achieve my goal...and I nailed it!"

Parker Thompson 500 Startups

"It's a great way for students to improve their educational experience and it seemed like a product that everybody wants, so all the people participating are winning."

Become an Elite Notetaker and start selling your notes online!

Refund Policy


All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email


StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here:

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to

Satisfaction Guarantee: If you’re not satisfied with your subscription, you can contact us for further help. Contact must be made within 3 business days of your subscription purchase and your refund request will be subject for review.

Please Note: Refunds can never be provided more than 30 days after the initial purchase date regardless of your activity on the site.