New User Special Price Expires in

Let's log you in.

Sign in with Facebook


Don't have a StudySoup account? Create one here!


Create a StudySoup account

Be part of our community, it's free to join!

Sign up with Facebook


Create your account
By creating an account you agree to StudySoup's terms and conditions and privacy policy

Already have a StudySoup account? Login here

Assignment 3

by: mpm.mcpadden Notetaker

Assignment 3 Biol 1107

mpm.mcpadden Notetaker

Preview These Notes for FREE

Get a free preview of these Notes, just enter your email below.

Unlock Preview
Unlock Preview

Preview these materials now for free

Why put in your email? Get access to more of this material and other relevant free materials for your school

View Preview

About this Document

Lab Assignment 3 - DRAFT
Principles of Biology I
Thomas Abbott
Class Notes
25 ?




Popular in Principles of Biology I

Popular in Biology

This 7 page Class Notes was uploaded by mpm.mcpadden Notetaker on Monday October 10, 2016. The Class Notes belongs to Biol 1107 at University of Connecticut taught by Thomas Abbott in Summer 2015. Since its upload, it has received 4 views. For similar materials see Principles of Biology I in Biology at University of Connecticut.


Reviews for Assignment 3


Report this Material


What is Karma?


Karma is the currency of StudySoup.

You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 10/10/16
The Presence of Succinate and its Effect  On the Rate of Cellular Respiration & The Effect of Alternate Sugar Sources and  Incubation Temperatures on Carbon Dioxide Generation Michael McPadden Biology 1107­27 TA: Lauren Harrison TA: Deaneira Lakheram September 27, 2016 Hypotheses Aerobic Respiration­ If more succinate is present in the solution, then it follows that the rate of  cellular respiration will be higher.  Anaerobic Respiration­ If the incubation tubes are left at 60 degrees Celsius, then they will have  more CO2 production than any other temperature.  Fermentation­ If fructose is used as the carbohydrate, then this will have the greatest effect on an  increase of CO2 production during fermentation.  Introduction Cells are dependent on oxygen and aerobic respiration to produce the energy the cell  needs to survive. Cellular respiration is the way in which cells produce a maximum of 38 ATP  molecules used for energy. The first step in cellular respiration, glycolysis, occurs in the  cytoplasm, while the citric acid cycle and electron transport chain occur in the mitochondria. In  the first part of the experiment the conversion of succinate to fumarate is monitored as one of the enzymatic reactions in the citric acid cycle. During cellular respiration succinate is oxidized to  create fumarate. One of the ways we measure this reaction is by providing an alternate electron  acceptor, which is a dye called DCPIP. During the oxidation process DCPIP is reduced when it  “snatches” the generated electrons (Lombard). When this happens the dye changes from blue in  its oxidized state, to colorless in its reduced state.  Using the spectrophotometer we can try to  accurately account for this reaction.  When cells don’t have the oxygen required for cellular respiration, fermentation takes  place instead, generating 2 ATP. After glycolysis, if oxygen is not present, then fermentation  reactions will proceed to produce this ATP. The goal of this experiment is to test and monitor the generation of carbon dioxide by yeast cells when they are placed with different sugars and in pre  determined incubation temperatures. After creating a series of nested tubes we can determine  how both incubation temperature and alternative sugar sources affect the reaction.  Results Shown in “Figure 1” is the line graph version of the “Table 13­2” results of the aerobic  respiration. The raw data from this part of the experiment is used to show the how succinate  forms in to fumarate using a mitochondrial fraction made from lima beans. Tube 1 was our  “blank” tube, used to set the standard for transmittance and read “100%” on the  spectrophotometer. Tubes 2 through 5 all contained 1 mM of DCIP, while tube 4 contains  additional succinate to add to the reaction. Tube 2 started at 22.1% and finished the 30 minutes  with 48.9%. Tube 3 also started at 22.1% but increased more than tube 2, finishing the 30  minutes at 67.9%. Tube 4 first read 24% transmittance and finished the 30 minutes at 75.4%  Lastly tube 5 started with a higher transmittance of 33.8% and finished with 46.5%. Tube 4 had  the greatest increase in transmittance. Tube 4 was also the tube that had 1 mL more succinate  than the others and helps prove the hypothesis, “If more succinate is present in the solution, then  it follows that the rate of cellular respiration will be higher.” “Figure 2” represents the initial gas volume, final gas volume, and the total volume of  CO2 produced. At 0 degrees Celsius the gas volume increased from 1 mL to 1.5 mL for an total  of .5 mL. At room temperature the initial gas volume started at 1.1 mL and increased to 2.2 mL  for a total of 1.1 mL. At 45 degrees Celsius the volume of CO2 increased from 1.6 mL to 5.8 mL for a total production of 4.2 mL. At 60 degrees Celsius the initial gas volume increased from 1.3  mL to 5 mL for a total increase of 3.7 mL. Lastly the boiled yeast increased from 2 mL to 2.7 mL for a total increase of .7 mL. The table disproves my hypothesis “If the incubation tubes are left  at 60 degrees Celsius, then they will have more CO2 production than any other temperature.”  This was disproven because the increase in CO2 production was greatest at 45 degrees Celsius  instead of 60 degrees.  “Figure 3” shows the increase of CO2 volume based on the type of carbohydrate used.  Galactose was the first carbohydrate tested and increased from 1.5mL to 1.8 mL for a total of .3  mL. sucrose increased from 1.3 mL to 4.4 mL for a total of 3.1 mL. Fructose increased from 1.8  mL to 4.2 mL for a total of 2.4 mL. Maltose increased from 2.0 mL to 3.0 mL. Lactose didn’t  increase at all and instead stayed at the gas volume of 1.1 mL. Lastly, Lactose and Lactaid had  the most CO2 produced with a total of 3.4 mL produced, increasing from 1.1 mL to 4.5 mL.  Percent Transmittance at 600 nm 120 100 80 1 2 60 Transmittance (% T) 3 4 40 5 20 0 1.0 5.0 10.0 15.0 20.0 25.0 30.0 Time (Minutes) Figure 1 Effect of Incubation on Fermentation 7 5.8 6 5 5 4.2 3.7 4 initial gas Volume of Carbon Dioxide (mL) 3 2.7 final gas 2.2 2 volume produced 2 1.5 1.6 1.3 1 1.1.1 1 0.5 0.7 0 Temperature (Celsius) Figure 2 Effect of Carbohydrate on Fermentation 5 4.4 4.5 4.5 4.2 4 3.5 3.4 3.1 3 3 2.4 2.5 2 Initial Gas 2 1.8 1.8 Volume of Carbon Dioxide (mL) 1.1.3 Final Gas 1.5 11.1.1 Volume Produced 1 0.5 0.3 0 0 Carbohydrate Figure 3  Conclusion In our experiment we used succinate because it converts to fumarate. This reaction  produces free electrons that normally enter the electron transport chain. However we used  DCPIP as an alternate electron acceptor (Lombard). As a result we can monitor the reduction of  the DCPIP to see the reactions taking place. We use a spectrophotometer to quantify these results through a measurement of the light that is transmitted. We measure transmittance because it  informs us on how much of the wavelength was able to pass through the solution.  My  hypothesis was, “If more succinate is present in the solution, then it follows that the rate of  cellular respiration will be higher.” On figure 1 it is clearly shown that tube 4 increased to have  the greatest transmittance percentage. Tube 4 was also the tube with additional succinate. As we  can see the additional succinate helped cellular respiration as it had the greatest conversion from  the blue oxidized DCPIP to the colorless DCPIP. We know this because of the  spectrophotometer reading of 75.4%, which was higher than all the other tubes, showing that it  has the most DCPIP conversion occurring.  The temperature affects CO2 production in yeast in a way that simulates a bell curve.  When looking at figure 2 you can see how the CO2 production increases to the final product  point of 5.8 mL before decreasing back down as the temperature continues to increase. 45  degrees Celsius was the median temperature we used in the experiment. This temperature proved to be the most optimal and had the greatest volume of CO2 produced at 4.2 mL. At 60 degrees  Celsius the CO2 production wasn’t too far behind at 3.7 mL. My hypothesis stated, “If the  incubation tubes are left at 60 degrees Celsius, then they will have more CO2 production than  any other temperature.” This proved to be wrong and 45 degrees Celsius was the better choice.  After completing the experiment it seems safe to say that at 0 degrees Celsius, room temperature, and 100 degrees Celsius, not much CO2 is produced in comparison to both 45 and 60 degrees  Celsius.  Different carbohydrates were used to test the effect on fermentation. The only sugar that  did not ferment at all was lactose. Galactose did not ferment well but we did record an increase  of .3 mL of CO2 for this sugar. My hypothesis was “If fructose is used as the carbohydrate, then  this will have the greatest effect on an increase of CO2 production during fermentation.” My  hypothesis proved to be false because both Lactose and Lactaid, and Sucrose had a higher CO2  volume produced. However, Fructose was a close third place behind these two sugars. Sucrose  and Fructose both worked and produced 3.1 mL and 2.4 mL. Maltose and Lactose both didn’t  produce much CO2 but when Lactose and Lactaid were combined it produced the greatest  amount of CO2 out of any of the sugars. Lactaid was used as an enzyme and helped convert  lactose (Types of Sugars).  One of the sources of error we experienced was not blanking the spectrophotometer  initially. As a result, this negatively influenced our data for the first minute of aerobic respiration experiment. We were able to work through this by comparing data with another group and  figuring out about what percentage the tubes should have been.  Works Cited A. E. (2006). Introduction. Retrieved September 27, 2016, from Lombard, K., Terry, T., & Milinoski, C. (n.d.). Principles Of Biology I (LaboratoryManual).  Macmillan Learning. Types of Sugars. (n.d.). Retrieved September 27, 2016, from­of­Sugar.php


Buy Material

Are you sure you want to buy this material for

25 Karma

Buy Material

BOOM! Enjoy Your Free Notes!

We've added these Notes to your profile, click here to view them now.


You're already Subscribed!

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

Why people love StudySoup

Bentley McCaw University of Florida

"I was shooting for a perfect 4.0 GPA this semester. Having StudySoup as a study aid was critical to helping me achieve my goal...and I nailed it!"

Amaris Trozzo George Washington University

"I made $350 in just two days after posting my first study guide."

Steve Martinelli UC Los Angeles

"There's no way I would have passed my Organic Chemistry class this semester without the notes and study guides I got from StudySoup."

Parker Thompson 500 Startups

"It's a great way for students to improve their educational experience and it seemed like a product that everybody wants, so all the people participating are winning."

Become an Elite Notetaker and start selling your notes online!

Refund Policy


All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email


StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here:

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to

Satisfaction Guarantee: If you’re not satisfied with your subscription, you can contact us for further help. Contact must be made within 3 business days of your subscription purchase and your refund request will be subject for review.

Please Note: Refunds can never be provided more than 30 days after the initial purchase date regardless of your activity on the site.