×

### Let's log you in.

or

Don't have a StudySoup account? Create one here!

×

or

## Week of September 19th

by: Brandon Short

4

0

4

# Week of September 19th Calculus 1151

Brandon Short
OSU

Get a free preview of these Notes, just enter your email below.

×
Unlock Preview

Buy as needed. These are great if you missed the week or just don't feel like taking notes!
COURSE
Math 1151 - Calculus 1 (11380)
PROF.
Professor Stephen Swihart
TYPE
Class Notes
PAGES
4
WORDS
KARMA
25 ?

## Popular in Calculus and Pre Calculus

This 4 page Class Notes was uploaded by Brandon Short on Monday October 10, 2016. The Class Notes belongs to Calculus 1151 at Ohio State University taught by Professor Stephen Swihart in Fall 2016. Since its upload, it has received 4 views. For similar materials see Math 1151 - Calculus 1 (11380) in Calculus and Pre Calculus at Ohio State University.

×

## Reviews for Week of September 19th

×

×

### What is Karma?

#### You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 10/10/16
Calculus notes for week of 9/19/16 3.6 Derivatives as Rates of Change Velocity is measured as: V  ave(t+∆t) or s(b) – s(a)           ∆t   b – a (Change in position over change in time.) S’’(t) = V’(t) = A(t) (From left to right: S=Position, V= Velocity, and A=Acceleration) Average and Marginal Cost Suppose C(x) gives the total cost to produce x units of a good cost. Sometimes,  C(x) = FC + VC * x FC = Fixed cost which does not change with units produced. VC = Variable cost which is the cost to produce each unit. C(x) = Average cost. C’(x) = Marginal cost, which is approximately the extra cost to produce one more unit beyond x  units. C’(x) = lim   C(x+∆x) – C(x) ∆x>0 ∆x 3.7 Chain Rule How do we differentiate a composition of functions f(g(x)) or (f*g)(x)? Chain Rule: If g is differentiable at x and f is differentiable at g(x), then (f*g) is differentiable.  [f(g(x))]’ = f ‘(g(x)) * g’(x)  Pseudo Proof [f(g(x))]’ = lim  f(g(x+h)) – f(g(x))        h>0 h     = lim  f(g(x+h)) – f(g(x)) * g(x+h) – g(x)        h>0     g(x+h) – g­(x)          h Since g is differentiable, it is continuous, so u = g(x+h) > g(x) as h>0, Then, = lim      f(u) – f(g(x)) * lim  g(x+h) – g(x)   u>g(x)    u­g(x)   h>0         h Chain Rule Alternative Version If y is a differentiable function of u, and u is a differentiable function of x, then y(u(x)) is a  differentiable function of x, with dy = dy * du dx    du    dx 3.8 Implicit Differentiation We know how to differentiate many explicitly defined functions f(x), How can we differentiate implicitly defined functions such as F(x,y) = x – x y  + e  = 8? 2 3 y Implicit Differentiation Treat y as a function of x, so  /  (y(dx)4/3 = 4/3(y(x))1/3 * y’(x) =  /  y = 4/3y  *dx 4/3  1/3 1. Take d/dx of both sides. 2. Move all y’ terms to one side and non­y’ terms to the other.  3. Factor y’ out and divide to solve. 2 8 Terms like x y  require product rule as y is a function of x. Higher Order Derivatives 1. To find d y/dx , first find  / . dy dx dy dy 2. Differentiate both sides of  / . RHS dxll usually involve x,y, and y’ / dx  3. Replace y’ by what you know it to be. 3.9 Derivatives of Logarithms and Exponentials  We know  /  e dx ex x d What is  /  dxx? x lnx Since e  and lnx are inverse functions, e  = x for x>0 Differentiate both sides.  d/  e  =  /  x dx dx lnx e  * (lnx)’ = 1 > x * (lnx)’ = 1 (lnx)’ = 1/x for all x = 0. It’s good to know  /  ln│x│ = 1/x for all (x<0) dx Logarithms with other Bases d What is  /  dxg │x│b Apply change of base formula: Log Ab= log A  a log argument    logaB log aase Use a = e  log b = lnA    lnB d /dxlog │b│= d/dx (ln│x│)(lnB) = (1/lnB) (1/x) = (1/xlnB) Exponentials other than e. How do we differentiate b  or f(x) ? g(x) Trick: Convert to base e first. d x d lnb x xlnb /dxb  =  / dxe )  = d/dx e = e xln * 1 * lnb = b  * lnb Logarithmic Differentiation F(x) =  (2x      +      (      –    ) x^3  5 8 4 (1 + x + x ) This would be painful to differentiate with normal rules.  1. Take ln of both sides ln y =ln f(x). 2. Differentiate using implicit differentiation. a. 1/y * y’ =  /  ln f(x) dx 3. Solve for y’. y’ = y  /  ln fdx) Ln y = ln(2x2 + 1)5 + ln(3e  ­ x )  – ln 4  – ln(1 + x – x ) 5 8 2 ­2x 3 3 5 = 5ln(2x  + 1) + 2ln(3e  – x ) – x ln4 – 8ln(1 + x – x ) 2 5 4 = ­3x ln4 – 8 * [1/(1 + x – x )] *(1 – 5x ) 3.10 Derivatives of Inverse Trig Functions (sin x)’ = 1/√1 – x   2 ­1 < x < 1 (tan x)’ = 1/1 + x   2 All real x ­1 2 (sec x)’ = 1/│x│√x  + 1 x > 1, or x < ­1 ­1 2 (cos x)’ = ­1/√1 – x ­1 < x < 1 (cot x)’ = ­1/1 + x 2 All real x (csc x)’ = ­1/│x│√x  – 1 2 x > 1, or x < ­1

×

×

### BOOM! Enjoy Your Free Notes!

×

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

## Why people love StudySoup

Jim McGreen Ohio University

#### "Knowing I can count on the Elite Notetaker in my class allows me to focus on what the professor is saying instead of just scribbling notes the whole time and falling behind."

Amaris Trozzo George Washington University

#### "I made \$350 in just two days after posting my first study guide."

Bentley McCaw University of Florida

#### "I was shooting for a perfect 4.0 GPA this semester. Having StudySoup as a study aid was critical to helping me achieve my goal...and I nailed it!"

Parker Thompson 500 Startups

#### "It's a great way for students to improve their educational experience and it seemed like a product that everybody wants, so all the people participating are winning."

Become an Elite Notetaker and start selling your notes online!
×

### Refund Policy

#### STUDYSOUP CANCELLATION POLICY

All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email support@studysoup.com

#### STUDYSOUP REFUND POLICY

StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here: support@studysoup.com

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to support@studysoup.com