New User Special Price Expires in

Let's log you in.

Sign in with Facebook


Don't have a StudySoup account? Create one here!


Create a StudySoup account

Be part of our community, it's free to join!

Sign up with Facebook


Create your account
By creating an account you agree to StudySoup's terms and conditions and privacy policy

Already have a StudySoup account? Login here

Test 101, Week 1 Notes

by: Brianna Notetaker

Test 101, Week 1 Notes Test 101

Marketplace > Arizona State University > Test 101 > Test 101 Week 1 Notes
Brianna Notetaker

Preview These Notes for FREE

Get a free preview of these Notes, just enter your email below.

Unlock Preview
Unlock Preview

Preview these materials now for free

Why put in your email? Get access to more of this material and other relevant free materials for your school

View Preview

About this Document

This is the test upload.
Test Webinar Session
Brianna Johnson
Class Notes
25 ?




Popular in Test Webinar Session

Popular in Department

This 5 page Class Notes was uploaded by Brianna Notetaker on Monday October 10, 2016. The Class Notes belongs to Test 101 at Arizona State University taught by Brianna Johnson in Fall 2016. Since its upload, it has received 2 views.


Reviews for Test 101, Week 1 Notes


Report this Material


What is Karma?


Karma is the currency of StudySoup.

You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 10/10/16
IBB Chapter 4 Notes­ How Do Neurons Transmit Information? Early Clues that Linked Electricity and Neuronal Activity  Electrical Stimulation­ Passing an electrical current from the uninsulated tip of an electrode onto a nerve  produces a muscular contraction  Electrical stimulation of the neocortex (a part of the cerebral cortex concerned w/sight and hearing) causes  movement; Specific parts of neocortex cause arm/leg stimulation  Brain of conscious person can be stimulated electrically to produce body movement  Voltmeter­ Device that measures the flow and the strength of electrical voltage by recording the difference  in electrical potential between two bodies  Electroencephalogram (EEG)­ Graphs brain’s electrical activity; Monitors sleep stages, walking activity,  and disruptions (e.g. epilepsy)   Neurons send electrical messages that move as a wave and contains a chemical basis  Consecutive waves constitute message conveyed by neuron  Wave travels along axon, not the electrical charge (e.g. when dropping stone into pool, only pressure  change moves, not water/ speaking carries sound waves/ flicking a towel moves wave to opposite end of  towel) Tools for Measuring a Neuron’s Electrical Activity  If single axon is stimulated, wave of excitation is produced, which can be recorded by electrode attached to voltmeter  Most neurons are 1­20 um in diameter (giant squid studied w/ 1,000 um neurons)  Oscilloscope­ Serves as a sensitive voltmeter by registering flow of electrons to measure voltage (electron  beam leaves trace on screen and deflections are used)  Microelectrode­ A microscopic insulated wire or a salt­water­filled glass tube of which the uninsulated tip  is used to stimulate or record from neurons  Nerve impulses= changes in ion concentration across membrane  Basis of electrical activity is movement of intracellular and extracellular ions carrying positive and  negative charges  How the Movement of Ions Creates Electrical Charge  Intra/extracellular fluids of neurons filled with Na+ (sodium), K+ (potassium), and Cl­ (chloride) ions  Cations­ Positively charged ions  Anions­ Negatively charged ions  Three factors that influence ion movement: diffusion, concentration gradient, charge  Diffusion­ Spontaneous spreading out of ions from where they’re more concentrated to where they’re less  concentrated (equilibrium results)  Concentration Gradient­ Describes relative concentration of a substance in space or solution (e.g. pouring  salt into water­ starts off in one area w/high concentration and diffuses to area with lower concentration/  spreads out)  Ions carry an electrical charge (like charges repel and opposites attract)  Voltage Gradient­ Difference in charge between two regions that allow a flow of current if the two regions  are connected  Concentration gradient and voltage gradient= e.g. of ion movement  Ions always move from higher concentration/voltage to lower   Concentration gradient e.g.= sodium and chloride  Voltage gradient e.g.= positive and negative charges  Efflux­ Outward flow; Influx­ Inward flow  Concentration gradient= Voltage gradient Resting Potential  Electrical charge across a resting cell membrane creates store of potential energy  Electrical Potential­ Ability for a cell to use its stored power  Resting Potential­ Electrical charge across the cell membrane in absence of stimulation; Store of energy  produced by a greater negative charge on inner side relative to outside  Extracellular side of membrane is given charge of 0mV and inside given charge of ­70mV  Four charged particles that take part in producing resting potential (all in unequal distributions):  1­ ions of sodium (Na+) [more in extracellular fluid]   2­ ions of potassium (K+) [more in intracellular fluid]  3­ chloride ions (Cl­) [more in extracellular fluid]  4­ large protein molecules (A­) [more in intracellular fluid]  Cell membrane channels, gates, and pumps maintain resting potential  Large protein molecules remain inside cell (due to selective permeability)  K+ and Cl­ move more freely, but Na+ gates keep out sodium ions  Na+ removed from intercellular fluid and replaced with K+ via the sodium­potassium pump (exchanges 3  intracellular Na+ ions for 2 K+ ions when leaks occur) Resting Potential­ Inside the Cell  Negative charge of A­ proteins alone is sufficient to produce transmembrane voltage or resting potential  To balance this (^), K+ ions accumulate up to 20x as much in intracellular fluid vs. extracellular fluid  Some K+ can’t enter because of high concentration already within cell  Intracellular fluid remains negative despite influx of K+ ions because not enough K+ ions are able to  balance charge of large proteins (A­) because too much K+ influx is opposed by concentration gradient Resting Potential­ Outside the Cell  Na+ doesn’t diffuse into cell because 1) Would eliminate charge produced by K+ ions and 2) Na+ ion  channels usually closed  Na+ could leak in, but cell has mechanism to prevent this neutralization (Na+/K+ pump)  10x as many Na+ ions on extracellular side vs. intracellular side (contributes to resting potential)  Cl­ concentration gradient= Cl­ voltage gradient approximately same as resting potential; 12x as many Cl­  ions outside cell as inside Graded Potentials  Graded Potentials­ Small voltage fluctuation in cell membrane restricted to vicinity on axon where ion  concentrations change to cause brief increase (hyperpolarization) or decrease (depolarization) in electrical  charge across membrane  Graded potentials decay before traveling far as when a rock is dropped into smooth pond and causes ripples  Axon must be stimulated for graded potential to occur  If voltage applied to inside of membrane is negative, membrane potential increases in negative charge (­70  mV to ­73 mV)  Hyperpolarization­ Increase in electrical charge across membrane, usually due to inward flow of Cl­ or  outward flow of K+ (makes inside more negative)  Charge=polarity  Depolarization­ Decrease in electrical charge across membrane, usually due to inward flow of Na+ (makes  inside more positive)  Polarization typically occurs on soma membrane and dendrites of neuron The Action Potential  Action potential­ Large, brief reversal in the polarity of an axon where voltage suddenly reverses, making  intracellular side positive relative to extracellular, then abruptly reverses again after resting potential is  restored  Occurs when Na+, then K+ ions cross membrane rapidly  Depolarizing phase due to Na+ influx  Hyperpolarizing phase due to K+ efflux  Action potential is triggered when cell depolarizes to ­50 mV  Na+ rushes in, then K+ rushes out  Threshold Potential­ Voltage on a neural membrane at which an action potential is triggered by opening of  Na+ and K+ voltage­sensitive channels (about ­50 mV)  Relative voltage of membrane drops to 0 and continues to depolarize until charge or inside of membrane is  as great as +30mVs (total voltage change of 100 mV)  Reversal then occurs and cell becomes slightly hyperpolarized   If TEA present, K+ channels become blocked and smaller action potential occurs from Na+ influx  If Tetrodoxin present, Na+ channels become blocked and smaller action potential occurs from K+ efflux The Role of Voltage­Sensitive Ion Channels  Voltage­Sensitive Channel­ Gated protein channel that opens or closes only at specific membrane voltages; Causes an action potential  When membrane reaches threshold voltage, configuration of voltage­sensitive channels alters, enabling  them to open and let ions pass through (at ­50 mV)  Voltage­sensitive Na+ channels more sensitive than K+ channels, so they open first Action Potentials and Refractory Periods  Limit on how frequently action potentials occur  Absolutely Refractory­ Refers to state of an axon in repolarizing period during which a new action  potential cannot be elicited (w/some exceptions), because gate 2 of sodium channels, which is not voltage  sensitive, is closed  Sodium channels have two gates, potassium have one  Relative Refractory­ Refers to state of an axon in later phase of an action potential, during which increased  electrical current is required to produce another action potential; A phase during which K+ channels are  still open; Stimulate during hyperpolarization Refractory Period  1) Gate 1 of Na+ channel is closed, but gate 2 of Na+ is open (resting potential)  2) Gate 1 of Na+ now opens, but gate 2 of Na+ closes­ membrane depolarizes when gate 1 opens, but ends  when gate 2 closes (threshold level)  3) While gate 2 of Na+ channel is closed during repolarization, membrane is absolutely refractory  4) Opening of potassium channel repolarizes and eventually hyperpolarizes membrane  5) Since K+ channels open and close slowly vs. Na+ channels, hyperpolarization produced by efflux of K+  ions makes the membrane relatively refractory  Because of refractory periods, there’s 5 millisecond limit on how frequently an action potential can occur  (axon can produce action potentials at max. rate of 200/sec)  Ex: Toilet flushing­ hard lever initiates flushing (action potential), during flush toilet is absolutely  refractory (another flush can’t happen at time), refilling of bowl is relatively refractory (re­flushing is  possible, but harder), then rest The Nerve Impulse  Nerve Impulse­ Propagation of an action potential on the membrane of an axon  Propagate­ To give birth   Each successive action potential gives birth to another down length of axon (domino effect)   Two factors ensure single nerve impulse of constant size down axon:  1) Voltage­sensitive channels produce refractory periods, which prevent it from reversing direction  2) All action potentials generated as nerve impulses travel of same magnitude   Action potential is either generated or not at all  “Domino Effect” causes opening of one channel to produce voltage change that triggers opening of  neighbor’s channel  Saltatory Conduction and Myelin Sheaths  Glial cells play role in speeding nerve impulses in vertebrate nervous system  Myelin Sheath­ Schwann cells in human peripheral nervous system and oligodendroglia in central nervous  system wrap around each axon, insulating it besides small, exposed gap (node of Ranvier)  Myelin prevents occurrence of action potentials because few channels through which ions can flow  Nodes of Ranvier­ Part of an axon not covered by myelin, richly endowed w/voltage­sensitive channels;  Action potential at one node can trigger opening of voltage­sensitive gates at adjacent node  Saltatory Conduction­ Propagation of an action potential at successive nodes of Ranvier; speeds up rate at  which action potential can travel along axon How Neurons Integrate Information  Neuron contains dendritic tree covered w/spines, allowing it to establish more than 50,000 connections to  other neurons  Cell body between dendritic tree and axon, which too can receive connections from many other neurons  Neurons that receive more than one kind of input sum up the information that they get  Motor neurons receive input from skin, join, muscles, and brain Excitatory and Inhibitory Postsynaptic Potentials  Excitatory Postsynaptic Potential (EPSP)­ Brief depolarization of a neuron membrane in response to  stimulation, making the neuron more likely to produce an action potential; Reduce the charge on the  membrane toward the threshold level; Associated with the opening of sodium channels, allowing influx of  Na+ ions  Inhibitory Postsynaptic Potential (IPSP)­ Brief hyperpolarization of a neuron membrane in response to  stimulation, making the neuron less likely to produce an action potential; Increase the charge on the  membrane away from the threshold level; Associated with the opening of potassium channels, allowing  efflux of K+ ions (or influx of Cl­ ions)   EPSPs and IPSPs last only a few milliseconds (decay and resting potential is restored)  Action potential not produced on cell­body membrane; stimulation must reach axon hillock (area of cell  where axon begins because full of voltage­sensitive channels) Summation of Inputs  Applies to both EPSPs and IPSPs  Temporal Summation­ Graded potentials that occur at approximately the same time on a membrane are  summated; Pulses separated in time produce two EPSPs/IPSPs similar in size, pulses close together in time  partly sum, simultaneous pulses sum as one large EPSP/IPSP; Widely spaced  Spatial Summation­ Graded potentials that occur at approximately the same location and time on a  membrane are summated; Add to form a larger EPSP or IPSP; Pulses at same time, but different locations  do not influence each other  A neuron democratically sums all inputs that are close together in time and space  Neuron analyzes these inputs before deciding what to do (decision made at axon hillock) Voltage­Sensitive Channels and the Action Potential  Voltage­channel threshold level at axon hillock is ­50 mV; Summed IPSPs and EPSPs on cell­body must  depolarize membrane at hillock to ­50 mV to produce action potential  Dendritic branches don’t have many voltage­sensitive channels, so don’t normally produce action  potentials  Back Propagation­ Reverse movement of an action potential into the dendritic field of a neuron; Serves as a signal to dendritic field that neuron is sending an action potential over its axon; Postulated to play a role in  plastic changes that underlie learning  Inputs close to axon hillock have much more say in influence than inputs occurring farther away on distant  branches of dendrites; Some inputs have more say than others  With sufficient excitation, the generation of an action potential occurs  How Sensory Stimuli Produce Action Potentials  We receive information about the world through tactile sensations (body senses such as touch and pain),  auditory sensations (hearing), visual sensations (sight), and chemical sensations (taste and olfaction)  Stretch­Sensitive Channel­ Ion channel on a tactile sensory neuron that activates in response to stretching  of the membrane, initiating a nerve impulse   Hair receptors for hearing and balance also activate stretch­sensitive channels  In visual system, light particles strike chemicals in receptors within eye, causing chemical change that  activates ion channels in membranes of relay neurons How Nerve Impulses Produce Movement   Behavior is movement and in order for movement to occur, muscles must contract   Axon of each motor neuron makes one or few contacts (synapses) with target muscle   Axon terminal of motor neuron releases chemical transmitter acetylcholine onto end plate of muscle­cell  membrane  End Plate­ On a muscle, the receptor­ion complex that is activated by the release of the neurotransmitter  acetylcholine from the terminal of a motor neuron  Transmitter­Sensitive Channel­ Receptor complex that has both a receptor site for a chemical and a pore  through which ions can flow  Transmitter­sensitive channels depolarize to threshold for action potential, causing adjacent voltage­ sensitive channels to open, which produce action potential on muscle fiber, causing muscular contraction   Transmitter­sensitive channels allow both Na+ influx and K+ efflux through same pore (making them  larger than both two sodium and two potassium channels combined)   To generate sufficient depolarization on end plate to activate neighboring voltage­sensitive channels  requires release of appropriate amount of acetylcholine 


Buy Material

Are you sure you want to buy this material for

25 Karma

Buy Material

BOOM! Enjoy Your Free Notes!

We've added these Notes to your profile, click here to view them now.


You're already Subscribed!

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

Why people love StudySoup

Bentley McCaw University of Florida

"I was shooting for a perfect 4.0 GPA this semester. Having StudySoup as a study aid was critical to helping me achieve my goal...and I nailed it!"

Amaris Trozzo George Washington University

"I made $350 in just two days after posting my first study guide."

Steve Martinelli UC Los Angeles

"There's no way I would have passed my Organic Chemistry class this semester without the notes and study guides I got from StudySoup."

Parker Thompson 500 Startups

"It's a great way for students to improve their educational experience and it seemed like a product that everybody wants, so all the people participating are winning."

Become an Elite Notetaker and start selling your notes online!

Refund Policy


All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email


StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here:

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to

Satisfaction Guarantee: If you’re not satisfied with your subscription, you can contact us for further help. Contact must be made within 3 business days of your subscription purchase and your refund request will be subject for review.

Please Note: Refunds can never be provided more than 30 days after the initial purchase date regardless of your activity on the site.