New User Special Price Expires in

Let's log you in.

Sign in with Facebook


Don't have a StudySoup account? Create one here!


Create a StudySoup account

Be part of our community, it's free to join!

Sign up with Facebook


Create your account
By creating an account you agree to StudySoup's terms and conditions and privacy policy

Already have a StudySoup account? Login here

Chapter 6 - Human Physiology

by: Celine Notetaker

Chapter 6 - Human Physiology BIOL 2213

Marketplace > University of Arkansas > Biology > BIOL 2213 > Chapter 6 Human Physiology
Celine Notetaker
GPA 4.0

Preview These Notes for FREE

Get a free preview of these Notes, just enter your email below.

Unlock Preview
Unlock Preview

Preview these materials now for free

Why put in your email? Get access to more of this material and other relevant free materials for your school

View Preview

About this Document

These notes are a neat summary for those who don't want to read the whole textbook chapter. The information covered is what is most likely to be on the exam.
Human Physiology
Dr. Hill
Class Notes
BIOL, Human Physiology
25 ?




Popular in Human Physiology

Popular in Biology

This 12 page Class Notes was uploaded by Celine Notetaker on Sunday February 28, 2016. The Class Notes belongs to BIOL 2213 at University of Arkansas taught by Dr. Hill in Fall 2014. Since its upload, it has received 15 views. For similar materials see Human Physiology in Biology at University of Arkansas.


Reviews for Chapter 6 - Human Physiology


Report this Material


What is Karma?


Karma is the currency of StudySoup.

You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 02/28/16
Chapter 6 – Neuronal Signaling and the Structure of the Nervous System Divisions of the Nervous System – The two main divisions are the central nervous system (CNS) which is composed of the brain and spinal cord, and the peripheral nervous system (PNS) which  is composed of the nerves that connect the brain or spinal cord to the body’s muscles, glands,  and sense organs.  1. Nuclei – clusters of neurons in the CNS 2. Ganglia – clusters of neurons in the PNS Structures of a Neuron – Most neurons contain a cell body and two processes – the axons and  dendrites.  1. Cell Body – this is also known as the soma, and contains the nucleus, ribosomes,  mitochondria, and the genetic information necessary for protein synthesis.  2. Dendrites – a series of highly branched outgrowths of the cell body. The dendrites  receive input from other neurons, and their function is to increase surface area for this to  occur.  3. Dendritic Spines – these increase the surface area of the dendrites even further. They also contain ribosomes, which allow them to synthesize proteins so they can remodel their  shape in response to variation in synaptic activity. 4. Axon – a long process that extends from the cell body and carries output to its target  cells. The axon contains an initial segment, which is a region of the axon that arises from  the cell body. Electrical signals are generated at the initial segment. The end of the axon  splits into branches, called collaterals that continue branching until they end in axon  terminals. Axon terminals are responsible for releasing neurotransmitters. Glial Cells – Glial cells are found in both the CNS and PNS. However, different glial cells are  found in each. 1. Glial Cells of the CNS a. Astrocytes – helps regulate the composition of the extracellular fluid by removing K  and neurotransmitters around synapses. They also stimulate the formation of  tight junctions between the cells that make up the walls of capillaries found in the  central nervous system, forming the blood­brain barrier. They also provide  glucose to neurons and remove ammonia. Finally, they have neuron­like  characteristics and are thought to take part in information signaling of the brain. b. Microglia – these are specialized macrophage cells that perform immune  functions in the CNS c. Ependymal Cells – these cells line fluid­filled cavities of the brain  d. Oligodendrocytes – the myelin­forming cells of the CNS. Oligodendrocytes may  branch to form myelin on other axons. 2. Glial Cells of the PNS a. Satellite Cells – these surround neural bodies in the PNS b. Schwann Cells ­ the myelin­forming cells of the PNS. These form myelin sheath  segments at regular intervals. The spaces in between the myelin are called the  nodes of Ranvier. The nodes of Ranvier are exposed portions of the axon’s  plasma membrane to extracellular fluid. Axonal Transport – this describes the movement of organelles and other materials between the  soma and the axon terminals. 1. Kinesins and Dyneins – these are known as “motor proteins.” These are double headed  proteins that bind to their cellular cargo and microtubule rails. They use the energy from  the hydrolysis of ATP to move along the microtubules. Kinesins move from the soma to  the axon terminal (anterograde). Dyneins move from the axon terminal to the soma  (retrograde). Functional Classes of Neurons – Neurons are divided into 3 functional classes. It is important to  note that a nerve fiber is a term used to refer to a single neuron and axon, while a nerve is a term  used to describe a bundle of neurons bound together with connective tissue, and is therefore an  organ. 1. Afferent Neurons – transmit information into the central nervous system from receptors  (not proteins) at their peripheral endings.  Cell bodies are located in the PNS while the  axon enters the CNS. 2. Efferent Neurons – convey information away from the central nervous system to effector  cells like muscles, glands, or other nerve cells. Cell bodies are located in the CNS while  their axon is in the PNS. 3. Interneurons – connect neurons within the central nervous system. The entire neuron,  including the cell body, is located in the CNS. Synapse – a synapse is an anatomically specialized region between two neurons where one  neuron alters the electrical and chemical activity of another neuron. Signals are transmitted  across synapses by neurotransmitters. Neurotransmitters can also affect the effector cells  (muscles, glands, etc.). Mostly, synapses occur between an axon terminal of a presynaptic neuron and a dendrite of a postsynaptic neuron. The neurotransmitters released from the presynaptic  neuron bind with specific protein receptors on the membrane of the postsynaptic neuron.  Neural Growth – The nervous system develops from undifferentiated stem cells that develop into neurons or glia. Once fully differentiated, a growth cone forms at the tip of each extending axon  and is involved in finding the correct route to its final target. As the axon grows, it is guided  along by glial cells. Neurotrophic factors are growth factors for neural tissue in the extracellular  fluid surround the growth cone or the distant target. As the nervous system is refined, neurons  undergo pre­programmed cell death in a process called apoptosis. Furthermore, the term  plasticity refers to the phenomenon in which the developing brain has much greater potential for  remodeling in response to stimulation or injury than in the adult brain.  Neural Injuries – Injuries can occur in several ways.  1. PNS Axonal Severance Injury – If axons are severed, they can repair themselves in the  PNS as long as the cell body is not damaged. The severed axon degenerates and a new  growth cone forms from the cell body which grows out towards the effector. Regrowth of the axon only occurs at 1 mm per day so injury repair is very slow.  2. CNS Spinal Injury – Spinal injuries normally crush the axons, rather than sever them.  When this happens, the nearby oligodendrocytes undergo apoptosis, damaging the myelin coat so axons cannot transmit signals efficiently. If the axons are severed, no significant  regeneration occurs in the CNS.  a. Research attempts to repair nervous tissue – researchers are creating tubes to  support regrowth of severed axons, and redirecting the axons to regions of the  spinal cord that lack growth­inhibiting factors. This prevents apoptosis of the  oligodendrocytes so that myelin is maintained. In addition, neurotrophic factors  are injected to support recovery and regrowth.  Basics of Electricity – Terms for the basics of electricity 1. Electric Potential – separated electrical charges of opposite sign that have the potential to  do work if they are allowed to come together 2. Potential Difference – the amount of charge between two points a. Referred to as potential 3. Current – the movement of electrical charge 4. Resistance – the hindrance to electrical charge movement I= V V=IR 5. Ohm’s Law:  R  or  Resting Membrane Potential – all cells in resting conditions have a potential difference across  the plasma membrane, with the inside of the cell being negatively charged. In neurons, the  resting potential exists because of a small excess of negative ions inside the cell and an excess of  positive ions outside. The charges, being attracted, form a tight shell around the plasma  membrane. A neuron has a resting potential of ­40 to ­90 mV. The magnitude of the resting  potential is determined by 2 factors: 1. Differences in specific ion concentrations in the intracellular and extracellular fluids 2. Differences in membrane permeabilities to the different ions, which reflects the number  of open channels for the different ions in the plasma membrane. Equilibrium Potential – There are 2 factors that can cause ions to move across a membrane:  chemical concentration and electrical potential. So, if 2 positively charged ions are on either side  of a membrane, but only 1 specific ion channel is open, then that free ion will move down its  chemical concentration gradient, making one compartment more positive that the other creating  an electric potential. However, at a point, this will stop because the like charges will start to repel each other. When the flux due to chemical concentration gradient is equal to the flux due to the  membrane electric potential, this is called equilibrium potential for the specific free ion. In  + neurons, the membrane potential is mostly influenced by the movement of K  out of the cell until equilibrium potential is reached. We have been talking about ion channels so now we will be  more specific of the types involved in neurons: 1. Leak K  Channel – These are a type of non­mediated transport ion channels, specific to  + potassium. This channel allows for a net movement of K  out of the cell. It is important to note that there are much more K inside the cell, but some escape to the extracellular fluid due to equilibrium potential. This is why the resting potential is negative.  +  2. Voltage­Gated Na Channel – these are a type of non­mediated transport ion channels,  specific to sodium. They open only at a certain voltage, so that sodium can rush in.  Graded and Action Potential Terms: 1. Depolarization – the membrane potential becomes less negative 2. Overshoot – the membrane potential reverses and the inside of the cell becomes positive 3. Repolarization – the membrane potential returns toward resting value 4. Hyperpolarization – the membrane potential is more negative than resting value Graded Potentials – These are important in short­distance signaling. The magnitude of the  potential can change. It has no threshold or refractory period. Depending on the stimulus, graded  potentials can either depolarize or hyperpolarize the membrane at the site. Steps are as follows: 1. Chemical Signal 2. Cationchannels (voltage gated channels) open so cations rush in the cell.   a. Extracellular Na  flow from the nearby positive portion towards the protein + b. Intracellular K  flow away from the protein channel towards the nearby negative  portion (so once the channels open, K  and Na  flow away from the channel)  3. A local charge flow (current) forms that decreases with increasing distance from the site  of depolarization. This is referred to as being decremental.  Introduction to Action Potentials – These are large alterations in the membrane potential. Many  cells are capable of producing action potentials like neurons, muscle cells, endocrine, immune,  and reproductive cells. Membranes on these cells that are capable of producing action potentials  are called excitable membranes, and the ability to produce action potentials is called excitability.  Action potentials are generated within 1­4 milliseconds. Voltage Gated Ion Channels – Ligand­gated ion channels and mechanically­gated ion channels  serve as the initial stimulus for an action potential. However, voltage­gated channels give the  +  membrane its ability to undergo action potentials. K voltage­gated ion channels are slower to  open and close than Na voltage­gated ion channels. Action Potential Mechanism – The following 7 steps outline an action potential: +  +  1. The membrane is at steady resting potential. K leak channels are open while the Na +  channels are closed. A neurotransmitter binds to a receptor, allowing Na to flow in the  neuron.  + 2. Local membrane is brought to threshold voltage by a depolarizing stimulus. Na  entry  causes depolarization, which opens more voltage gated Na channels.  +  +  3. More Na channels open to propagate the action potential, causing the localized area in  the cell to become positive. +  + 4. Voltage­gated K channels (different from leak channels) open and Na  channels are  inactivated by the inactivation gate, causing the depolarization to slow down and come to a halt. +  5. Outflow of K ions repolarizes the membrane back to a negative potential. The return to  negative potential caused the Na voltage­gated channels to close.  + 6. Persistent current through K  channels hyperpolarizes the membrane (behaves more like  + +  the K  equilibrium potential) because the K voltage gated channels are slow to close. 7. K  channels close and the membrane potential is brought back to resting potential by  + + Na /K  ATPase.   Threshold Potential – the membrane must be depolarized to about ­55 mV in order to initiate an  action potential. Once this is reached, the action potential delivers an “all­or­none” response. Local Anesthetics – These drugs prevent action potentials. They block voltage gated Na +  channels, preventing their opening in response to depolarization. Without action potentials,  graded signals generated in the periphery do not reach the brain, and pain is not felt.  Refractory Period – During the action potential, a second stimulus will not produce an action  potential. That certain region of the membrane is said to be in its absolute refractory period. This  occurs during the period when the voltage­gated Na  channels are either already open or have  preceded to the inactivated state during the first action potential. Therefore, absolute refractory  period is the point up to the minimum on the action potential curve (hyperpolarization).  Following this, there is an interval in which a second action potential can be produced only if the stimulus is strong enough. This interval is called the refractory period. Most neurons can deliver  100 action potentials per second. Finally, refractory periods are also the key in determining the  direction of the electrical signal down the axon.  Action Potential Propagation – Action potentials can only go forwards in the axon, since the area directly behind is in absolute refractory period. The velocity of action potentials depends on the  thickness of the fiber and whether or not the fiber is myelinated. The larger the fiber is, the faster the current moves, since resistance is reduced. Action potentials only occur along the nodes of  Ranvier, in a “jumping” process known as saltatory conduction. The myelin sheaths that create  the nodes of Ranvier are helpful for numerous reasons: 1. Membrane pumps do not have to restore as many ions. 2. Myelin coated neurons are more metabolically efficient because they use less ATP. 3. Myelin sheaths allow neurons to be thinner, saving space in the nervous system. Generation of Action Potentials – In afferent neurons, the initial depolarization to threshold is  achieved by a graded potential, called a receptor potential. Receptor potentials occur at the  peripheral ends of neurons. In other neurons, the depolarization to threshold is accomplished by a graded potential, synaptic potential, or pacemaker potential.  Synapses – Synapses are junctions between 2 neurons. There are 2 types of synapses: 1. Electrical Synapses – the plasma membrane of the presynaptic neuron and the  postsynaptic neuron are connected via gap junctions. The local currents from an action  potential allow to flow directly across from one neuron to another.  2. Chemical Synapses – the axon of the presynaptic neuron ends in a slight swelling called  the axon terminal, which hold synaptic vesicles that contain various neurotransmitters.  The postsynaptic membrane has an area called the postsynaptic density, which contains a  high concentration of membrane receptor proteins that bind to neurotransmitters.  Between the presynaptic neuron and postsynaptic neuron is the 10 to 20 nm space called  the synaptic cleft. Neurotransmitters are chemical released by the axon terminals that  diffuse across the synaptic cleft. If more than one neurotransmitter is released, the  addition chemical is called a cotransmitter.  Activation of Presynaptic Cell – the following steps outline the mechanism for neurotransmitter  release in the presynaptic cell: 1. An action potential reaches the terminal of the presynaptic membrane. 2+ 2. Depolarization causes Ca  voltage­gated channels to open, so calcium influxes inside the axon terminal. 3. Calcium ions activate the fusion of docked vesicles with the synaptic terminal membrane. a. Vesicles are docked in the active zones by SNARE proteins. When calcium  enters, Ca  binds to vesicle proteins called synaptotagmins, which pulls SNARE  proteins, resulting in membrane fusion and neurotransmitter release. Activation of Postsynaptic Cell – the following steps outline the mechanism for the activation of  the postsynaptic cell via neurotransmitters: 1. Neurotransmitters diffuse across the synaptic cleft. 2. Neurotransmitters bind to protein receptors on the plasma membrane. There are 2 types  of receptors here: a. Ionotropic Receptors – Ion channels (Ligand­gated channel receptor) b. Metabotropic Receptors – G Protein Coupled Receptors 3. Ion channels release their neurotransmitters when the surrounding concentration of free­ floating neurotransmitters decreases. 4. Unbound neurotransmitters are removed from the synaptic cleft by the following steps: a. Diffusion away from the receptor site b. Are enzymatically transformed into inactive substances  c. Active transport back into the axon terminal in a process called reuptake. Types of Chemical Synapses: 1. Excitatory – the postsynaptic response to the neurotransmitter is a depolarization (a  peak), bringing the membrane closer to threshold, so that an action potential is more  likely. The excitatory change is called the EPSP. 2. Inhibitory – the postsynaptic response to the neurotransmitter is a hyperpolarization (a  valley), bringing the membrane farther from threshold, so that an action potential is less  likely. The inhibitory change is called the IPSP. Synaptic Integration – the membrane potential of the postsynaptic neuron is a result of all the  synaptic activity affecting it at that precise moment. Therefore, the membrane potential is an  additive effect of all EPSPs and IPSPs. Temporal summation is defined as the process by which  input signals arrive from the same presynaptic cell at different times, resulting in the opening of  more ion channels causing a greater flow of positive ions into the cell.  Neuromodulators – These substances modify the presynaptic and postsynaptic cell’s response to  neurotransmitters, by either amplifying or dampening the effectiveness of synaptic activity. Both  neurotransmitters and neuromodulators have receptors. Receptors for neurotransmitters affect the condition of ion channels. Receptors for neuromodulators bring about changes in the metabolic  process of neurons which can affect enzyme activity or protein (receptor) synthesis.  Classes of Neurotransmitters: 1. Acetylcholine – This is found in both the CNS and PNS, especially at neuromuscular  junctions. Neurons that release ACh are called cholinergic neurons. Acetylcholine acts on the receptors muscarinic and nicotinic, which is found at neuromuscular junctions. ACh  is formed from the enzymatic reaction of acetyl CoA and choline and is broken down in  the synaptic cleft by acetylcholinesterase to produce acetate and choline. Alzheimer’s  disease is associated with the degeneration of cholinergic neurons and a decrease in ACh. 2. Biogenic Amines – These neurotransmitters are made from amino acids. Biogenic amines act on the receptor, Adrenergic, which is a G­Coupled protein receptor. Biogenic amines  consist of the following: a. Catecholamine b. Tyrosine­Based  i. Dopamine ii. Epinephrine – found in the PNS iii. Norepinephrine – found in both the CNS and PNS c. Serotonin (made from tryptophan) – this is found in the CNS, especially the  brainstem. It is responsible for sleep, emotions, cell growth, smooth muscle  contraction, mood and anxiety. d. Histamine (made from histidine) – this is found in the CNS, especially the  hypothalamus, and modulates sleep. It can sometimes be found in the PNS where  it is involved in allegoric reactions, nerve sensitization, and acid production in the stomach. 3. Amino Acid Neurotransmitters – Excitatory AA neurotransmitters are aspartate and  glutamate. Inhibitory AA neurotransmitters are glycine and GABA. Glutamate is  estimated to be the primary neurotransmitter at 50% of excitatory synapses in the CNS.  GABA is the main inhibitory neurotransmitter in the brain. 4. Neuropeptides – these are short chains of amino acids with peptide bonds. An example is  the endogenous opioids that regulate pain. Morphine and codeine mimic the effects of  these neuropeptides. 5. Gas Neurotransmitters – These are produced by enzymes in the axon terminal. They  diffuse from their sites of origin across the synaptic cleft and into the intracellular fluid of effector cells. Examples are nitric oxide and carbon monoxide.  Neuroeffector Junctions – These junctions occur between an efferent neuron and muscle fibers or glands. They act much in the same way as normal synapses. The major neurotransmitters  released at Neuroeffector junctions are acetylcholine and norepinephrine. Divisions of the Nervous System – The two major physical divisions are the afferent division  and efferent division. These can be broken down even further. 1. Afferent Division – consists of the somatic sensory, visceral sensory, and special sensory  system.  2. Efferent Division – consists of the somatic motor and autonomic motor (consisting of the  sympathetic, parasympathetic, and enteric systems). Anatomical Structures of the Brain – Memorize Figure 6­38 1. Forebrain ­  a. Cerebral Hemispheres – this has an outer shell of gray matter (cell bodies) and an  inner shell of white matter (myelinated fiber tracts). The diencephalon is the  central core of the forebrain. The longitudinal fissure separates the 2 hemispheres. Within the cerebral hemispheres is the corpus callosum, which is a bundle of  nerves that connects the 2 hemispheres. Each of the halves of the cerebral cortex  can be subdivided into 4 lobes: frontal, parietal, occipital, and temporal i. Functions include perception, generation of skilled movement, reasoning,  learning, and memory. Subcortical nuclei participate in the coordination of skeletal muscle. ii. There are 2 types of cells: pyramidal cells and non­pyramidal cells.  Pyramidal cells are the output cells, sending their axons to other parts of  the cortex and other parts of the CNS. Non­pyramidal cells receive inputs  into the cortex b. Thalamus i. Acts as a synaptic relay station for sensory pathways on their way to the  cerebral cortex ii. Participates in control of skeletal muscle c. Hypothalamus i. Regulates a variety of life sustaining and homeostatic behaviors d. Limbic System i. Participates in generation of emotions and emotional behavior ii. Plays essential role in most kinds of learning 2. Cerebellum a. Receives information from muscles and joints as well as skin, eyes, ears, and  viscera b. Coordinates movements – posture and balance c. Participates in some forms of learning 3. Brainstem a. Contains all fibers passing between the spinal cord, forebrain, and cerebellum b. Contain the reticular formation – cardiovascular and respiratory activity c. Contains nuclei for cranial nerves III through XII


Buy Material

Are you sure you want to buy this material for

25 Karma

Buy Material

BOOM! Enjoy Your Free Notes!

We've added these Notes to your profile, click here to view them now.


You're already Subscribed!

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

Why people love StudySoup

Steve Martinelli UC Los Angeles

"There's no way I would have passed my Organic Chemistry class this semester without the notes and study guides I got from StudySoup."

Allison Fischer University of Alabama

"I signed up to be an Elite Notetaker with 2 of my sorority sisters this semester. We just posted our notes weekly and were each making over $600 per month. I LOVE StudySoup!"

Jim McGreen Ohio University

"Knowing I can count on the Elite Notetaker in my class allows me to focus on what the professor is saying instead of just scribbling notes the whole time and falling behind."


"Their 'Elite Notetakers' are making over $1,200/month in sales by creating high quality content that helps their classmates in a time of need."

Become an Elite Notetaker and start selling your notes online!

Refund Policy


All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email


StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here:

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to

Satisfaction Guarantee: If you’re not satisfied with your subscription, you can contact us for further help. Contact must be made within 3 business days of your subscription purchase and your refund request will be subject for review.

Please Note: Refunds can never be provided more than 30 days after the initial purchase date regardless of your activity on the site.