New User Special Price Expires in

Let's log you in.

Sign in with Facebook


Don't have a StudySoup account? Create one here!


Create a StudySoup account

Be part of our community, it's free to join!

Sign up with Facebook


Create your account
By creating an account you agree to StudySoup's terms and conditions and privacy policy

Already have a StudySoup account? Login here

Gy 101 week 7 notes

by: Elle Notetaker

Gy 101 week 7 notes GY 101

Elle Notetaker

Preview These Notes for FREE

Get a free preview of these Notes, just enter your email below.

Unlock Preview
Unlock Preview

Preview these materials now for free

Why put in your email? Get access to more of this material and other relevant free materials for your school

View Preview

About this Document

These notes are all about the water cycle! ...The water cycle that makes it rain for days at a time in Alabama, yes...
Atmospheric Processes & Patterns
Eben Broadbent
Class Notes
geography, water cycle
25 ?




Popular in Atmospheric Processes & Patterns

Popular in Geography

This 7 page Class Notes was uploaded by Elle Notetaker on Thursday March 3, 2016. The Class Notes belongs to GY 101 at University of Alabama - Tuscaloosa taught by Eben Broadbent in Fall 2016. Since its upload, it has received 40 views. For similar materials see Atmospheric Processes & Patterns in Geography at University of Alabama - Tuscaloosa.


Reviews for Gy 101 week 7 notes


Report this Material


What is Karma?


Karma is the currency of StudySoup.

You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 03/03/16
GY 101­005 3/2/16 notes. (Notes taken by Elle Gossman) Precipitation: As evaporated water vapor rises with the air, it cools and condenses. When the  weight of the water is too much for the winds to hold it up, the water falls as precipitation. Not all precipitation is liquid, and the state depends on temperature. Globally, evaporation into the  atmosphere and precipitation are about the same.  Forms of Precipitation: Hail and snow: typically don’t last more than 4­6 months (that’s the residence time. And think:  how long is winter? The time periods correspond). The ice can stay longer if it’s locked in ice  caps or glaciers.  Glaciers: 20­100 years Ice sheets: up to 900,000 years Sublimation and Deposition: Sometimes water goes straight between gas and solid phases.  Deposition: water vapor turns straight into ice or snow Sublimation: ice or snow turns straight into water vapor Runoff and Groundwater: Once precipitation reaches the ground, it either  a) flows over the ground (runoff) or  b) it enters the soil (soil infiltration) and moves within the soil (percolation).  What the water does and how well it can enter the ground depends on the soil’s porosity (how  much empty space is in the dirt for water to move in) and on the soil’s permeability (how well  connected the pores are). Surface runoff often happens when soil is either saturated or if no  water can get below the top layer, such as asphalt. If no water can get in, the surface is  impermeable. The amount of infiltration and flow speed also change based on cover types, or  the type of soil. When water goes down, it can make an aquifer if the soil is permeable enough  for large amounts of water to move in and stick around.  Fun fact: the Ogallala aquifer is considered the biggest aquifer in the world. Reservoirs: ­ oceans ­ atmosphere ­ groundwater ­ ice  Processes: ­ evaporation ­ transpiration ­ condensation ­ sublimation ­ deposition ­ precipitation ­ infiltration Pathways: ­ surface runoff overland (rivers, streams, etc.) ­ groundwater flow (water moves underground via aquifers other methods Water vapor in the atmosphere gets there either through local evaporation or by advection  (moving sideways via wind). It changes quite a bit spatially. Another fun fact: Wind moving away from the equator is deflected by the coriolis effect. NOT the ‘corona effect’. (Cough cough Dr. Broadbent cough cough.) Saturation: Air can be saturated in 3 ways: 1) adding a whole bunch of water vapor to the air. If enough is added, a  precipitation fog forms. 2) Mixing cool air and warm air. This makes steam fog, and can form clouds 3) cooling warm air until it reaches the dew point and clouds form.  Effects of Curvature: Small drops of water have high curvature, and big drops have low curvature. If affects the  saturation vapor pressure. For example, if you have really small drops of water (they’ll have high curvature), then you’ll need supersaturation of 200% to get a droplet of pure water.  Water attracting, or hygroscopic aerosols act as condensation nuclei for water to condense  onto.  heterogeneous nucleation is when water condenses onto condensation nuclei, causing  dissolution of the aerosol, and is how clouds form.  Factors affecting Saturation: ­ Solution: Sometimes, condensation nuclei dissolve in water to make a solution,  which has lower evaporation than pure water. Hygrosocpic nuclei are in the atmosphere  from both natural sources (salt, dust, ash) and from anthropogenic (people) sources (ie,  exhaust). Smaller condensation nuclei result in slaller drops of water. Tiny droplets are  haze, below 90% RH (Relative Humidity). Above that is fog. ­ Ice Nuclei: water in the atmosphere doesn’t always freeze at 0℃. Sometimes, it  stays a liquid below the freezing point, becoming supercooled.  ­ Diabatic Processes: they involve the addition or removal of energy. For example,  when warm air passes over a cool surface, the air loses energy through conduction. The 2nd Law of Thermodynamics says that energy always moves from areas with lots of  energy (high temperatures) to areas with less energy (cool temperatures). Diabatic  processes are associated with fog, but not with clouds. ­ Adiabatic Processes: cloud formation usually involves a temperature change, but not an energy exchange. The 1st Law of Thermodynamics says that an increase in  internal temperature is equal to the total heat added and the work done by the  surroundings. Because rising air expands in a less dense atmosphere, there’s a  decrease in internal energy. The atmosphere did the work and the air cooled down.  ­ air cools as it rises because the air is less dense and the molecules spread  farther apart For your enjoyment, here’s a lovely picture I found within the great beast Internet. 2/29 Gy 101 Notes (Happy Leap Day!) Hydrologic Cycle Water Cycle has 3 components: 1) Reservoirs­ measure volume­ where water is stored.  2) Flows/pathways­ measure rate of movement­ routes between reservoires 3) residence times­ measure time­ the amount of time water spends in each  reservoir ­ OCEANS: The biggest of the reservoirs. Holds roughly 96.5% of all water at any  given time. Hold over 1 billion km³ of water. Water typically spends 1000­1500 years, but can stick around for up to 5000. ­ SOIL: One of the next biggest reservoirs. Hold about 12,000 km³. Residence time is 1­2 months. EVAPORATION: Liquid water gathers energy(heat) from solar radiation or ambient air to break  the bonds between water molecules and go into the air as water vapor. Humidity is the biggest  factor, but rate of evaporation also depends on air temperature, solar radiation, air humidity, and wind speed. (Wind mixes up the air to replace saturated air with unsaturated air. 90% of the  atmosphere’s moisture is provided by evaporation from oceans, seas, lakes, and rivers. WATER VAPOR & LIQUID WATER Evaporation and Condensation ­ Evaporation: because water molecules use energy from the air to escape the  liquid pool, there has to be energy in the air above it, as well as room for the water  molecules. As more water evaporates, there are more water molecules in the air, and  there will eventually be no room left for more water.  ­ Condensation: while water molecules escape into the air, other molecules run  into the pool and stay there, which is condensation. When the air cools, it can squeeze  out water molecules, which stick together to form water droplets. ­ Equilibrium: Evaporation and Condensation are constantly happening at the  same time. When they happen at the same speed, the air is holding as much water as it  can and they’ve reached equilibrium. When air is saturated, the water vapor in it  condenses and forms liquid water Transpiration: liquid water in plants turns into water vapor and enters the atmosphere. Plants  mostly lose this water through small openings called stomata in their leaves. They let water  vapor and other gases enter the atmosphere. Flow rate:21,000 km³/year. 1 big oak tree can  move enough water in a year to fill a swimming pool. Condensation: as water in the atmosphere goes higher, the air cools and becomes unable to  hold as much water. The water vapor then draws together to become liquid again­ this is  condensation. When a lot of water vapor condenses with small particles in the air such as dust,  salt, or smoke, clouds are made. Cloud seeding involves shooting particulates into the  atmosphere to allow water to condense and make clouds. All air has some water vapor in it, but  it may be too small to be seen. Atmosphere: Gets its water/moisture mostly through evaporation and transpiration. Most of the  evaporation comes from the ocean or soils. You can guess where transpiration comes from.  Here’s a hint, though: PLANTS (Gasp!). The atmosphere doesn’t hold a lot of water, but it’s the  main way that water gets from point a to point b around the world. Residence time: 9 days. That  means that all the water in the air is replaced every 9 days, or 40 times a year. How much Water is in the Atmosphere? Humidity: the amount of water vapor in the air. This refers to the gaseous form of water, not the  liquid/solid states (ie, rain, ice, snow, etc. and as we discussed, clouds are actually liquid water.) Vapor Pressure: the amount of pressure that water vapor exerts on the atmosphere. Dependent on temperature and density. Here’s a video we watched in class. Saturation Vapor Pressure: the vapor pressure that results in saturation. temperature  dependent. At low temperatures, there will be a low saturation vapor pressure. The saturation  v.p. doesn’t change in a linear way­ it changes more quickly at high temperatures than at low  temperatures.  Absolute humidity: the density of water vapor in the air. Expressed as grams/cubic meter.  (g/m³). Value changes as air volume expands and contracts. Specific humidity: represents a given mass of water vapor in a given mass of air. It doesn’t  change as air expands or contracts.  Saturation specific humidity: the specific humidity of air when it’s saturated Relative humidity: the amount of water in the air as compared to what the air can hold at that  temperature. Expressed as a percent. Changes based on air temperature       Relative Humidity =                specific humidity                                                             saturation specific humidity            x 100  Dew Poin t: The temperature the air has to cool down to for water vapor to condense. Changes  on a daily basis and is dependent on how much water vapor is in the air. High dew points mean  there’s lots of water in the air. It is equal or lower than the air temeperature.  . Here’s another  video we watched in class.­xl4mcJ8 Did you watch it? He has a cool hat. I’m pretty sure it’s a trilby.  Condensation Nuclei: the little things in the air that clouds form around. Ex: dust, salt, smoke.  Because there was so much vocabulary in this, I’m going to show you guys a fun picture to  make you feel better. Just kidding.  No, really, here’s a fun picture.­animals “fun” picture came from


Buy Material

Are you sure you want to buy this material for

25 Karma

Buy Material

BOOM! Enjoy Your Free Notes!

We've added these Notes to your profile, click here to view them now.


You're already Subscribed!

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

Why people love StudySoup

Steve Martinelli UC Los Angeles

"There's no way I would have passed my Organic Chemistry class this semester without the notes and study guides I got from StudySoup."

Allison Fischer University of Alabama

"I signed up to be an Elite Notetaker with 2 of my sorority sisters this semester. We just posted our notes weekly and were each making over $600 per month. I LOVE StudySoup!"

Steve Martinelli UC Los Angeles

"There's no way I would have passed my Organic Chemistry class this semester without the notes and study guides I got from StudySoup."

Parker Thompson 500 Startups

"It's a great way for students to improve their educational experience and it seemed like a product that everybody wants, so all the people participating are winning."

Become an Elite Notetaker and start selling your notes online!

Refund Policy


All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email


StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here:

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to

Satisfaction Guarantee: If you’re not satisfied with your subscription, you can contact us for further help. Contact must be made within 3 business days of your subscription purchase and your refund request will be subject for review.

Please Note: Refunds can never be provided more than 30 days after the initial purchase date regardless of your activity on the site.