New User Special Price Expires in

Let's log you in.

Sign in with Facebook


Don't have a StudySoup account? Create one here!


Create a StudySoup account

Be part of our community, it's free to join!

Sign up with Facebook


Create your account
By creating an account you agree to StudySoup's terms and conditions and privacy policy

Already have a StudySoup account? Login here

Applied Thermodynamics

by: Ardith Gutmann

Applied Thermodynamics MAE 321

Ardith Gutmann
GPA 3.6


Almost Ready


These notes were just uploaded, and will be ready to view shortly.

Purchase these notes here, or revisit this page.

Either way, we'll remind you when they're ready :)

Preview These Notes for FREE

Get a free preview of these Notes, just enter your email below.

Unlock Preview
Unlock Preview

Preview these materials now for free

Why put in your email? Get access to more of this material and other relevant free materials for your school

View Preview

About this Document

Class Notes
25 ?




Popular in Course

Popular in Mechanical Engineering

This 109 page Class Notes was uploaded by Ardith Gutmann on Saturday September 12, 2015. The Class Notes belongs to MAE 321 at West Virginia University taught by Staff in Fall. Since its upload, it has received 25 views. For similar materials see /class/202652/mae-321-west-virginia-university in Mechanical Engineering at West Virginia University.

Similar to MAE 321 at WVU

Popular in Mechanical Engineering


Reviews for Applied Thermodynamics


Report this Material


What is Karma?


Karma is the currency of StudySoup.

You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 09/12/15
MAE 321 Applied Thermodynamics Thermodvnamics An Engineerinq Approach 6th edition by Yunus A Qengel and Michael A Boles The Following Slides Are From the Instructor s Section of the McGraw Hill Web Site and Have Been Modified for This Course April 13 2009 Lecture Objectives Differentiate between dry air and atmospheric air Define and calculate the specific and relative humidity of atmospheric air Calculate the dewpoint temperature of atmospheric air Relate the adiabatic saturation temperature and wetbulb temperatures of atmospheric air Use the psychrometric chart as a tool to determine the properties of atmospheric air Apply the principles of the conservation of mass and energy to various airconditioning processes DRY AND ATMOSPHERIC AIR Atmospheric air Air in ihe almosphere coniaining some waier vapor or moisture DRY MR Dry air Air ihai coniains no waier vapor 7739 1 U kg Waier vapor in ihe air plays a major role in human 7 l comforl Therefore ii is an imporlani consideraiion U in aircondiiioning applicaiions I l W ll LUUJ hm 39 mum 39lT H kg 3 391 4 l LUUJ My MAI l HUSH H Al 5 WU The CD of air 0 Waier vapor in air behaves as if ii exisied alone assumed lo be consiam and obeys ihe idealgas relaiion Pv hen ihe ai 1005 kJkg C in ihe almospheric air can be ireaied as an idealgas iemperaiure range 10 mixiure lo 50 C wiih an error under 02 P Iquot HM F39a Parlial pressure of dry air PV Parlial pressure of vapor vapor pressure For Wafer h hT since waier h9 25009 kJkg ai 0 C vapor is an ideal gas 0quotan 182 kJkg C at 710 lo 50 C range I 39 5mm INII Hi3 I m L39 mum m W In ihe iemperaiure range o 17 7 IIWW 1 Hi5 lHIu llwm Tin l y g waier can be deiermined T quotC from ihis equaiion wiih negligible error 0 WA39I ILR VAI UR um ucc TfC Talm A4 44 kJk ill I I 416 U 2500 Lil m m quotPL 11 Ill F7 4 l 11 u 0 Jll 25735 25737 AL r 5 ZS HJ 25 16 Below 50 C ihe h consi lines oincide wiih ihe T consi lines in ihe uperheaied vapor region of waier c s SPECIFIC AND RELATIVE HUMIDITY OF AIR Absolute or specific humidity AIR humidity ratio The mass of water 25 C100 kPa vapor present in a unit mass of dry air 19mm0 we 31698 kPa m m mu kg wulcr vaporkg dry air Pv 0 dry air p Wk T p R p Pv lt 31698 kPa gt unsaturated an a m 0622 P 31698 kPagt saturated an m PullRH P R Pu 39 For saturated air the vapor LhIZI V gt A pressure is equal to the saturation in 7 739 7 P iLg mun mpm kg d1 dill pressure ofwater Saturated air The air saturated with moisture Relative humidity The ratio of the amount of moisture the air holds m to the maximum amount of moisture the air can hold at the same temperature mg Iiiii VRTil PP m i V RT 1 quot w I The difference between specific and relative humidities ii 39P 39 D J39PJ What is the relative humidity iii I v l ll ml quot1 U I 7 ml39 of dry air and saturated air In most practical applications the amount ofdry air in the air watervapor mixture remains constant but the amount of water vapor changes 1 0 kg of moist air Dry air Therefore the enthalpy of 1 kg atmospheric air is expressed per h u unit mass of dry air moisture H H H 2 will nub hkg II in E II ii ll II mi Ill 1quot h 5 Ir I1 11 whgkJ1g dry air I 7 IIquot 1 WIquot U I g d u The enthalpy of moist atmospheric airis Drybulb temperature expressed per unit mass of dry air not per The ordinary temperature unit mass of moist air of atmospheric air DEWPOINT TEMPERATURE Dewpoint temperature Td The temperature at which condensation begins when the air is cooled at constant pressure ie the saturation temperature of water corresponding to the vapor pressure p I all Iin l i39 MOIST AIR Liquid water droplets dew Constantpressure cooling of moist air and the dewpoint temperature on the Ts diagram of water When the temperature of a cold drink is below the dew point temperature of the surrounding air it sweats ADIABATIC SATURATION AND WETBULB TEMPERATURES Iiiu mm illH The mu 13910 i zllc uhlry mr remains cnmmnll iii iii Iii The mu l39luw rule ol39mpm in lhc lii39 increzmex l1 m umounl equal to hr mic nt39cvuporzniml iii mum l iii mum iii rimquot m T ind1 nil1l I INNi gt HIMii whim null1 mull ll m ml It l le only i m ml 2 T1 lug1h H023 i 7 l ll3917IIJTm3i i It i ii Hi I The specific humidity and relative humidity of air can be determined from these equations by measuring the pressure and temperature of air at the inlet and the exit of an adiabatic saturator Unsulurulcd uir ti Ga H 9 qumdwmcr J7 Liquid wuler ul 39 2 Sallurulcnl air 2 1 b 100 Adiuhulic sulumlinn lmnpcmlurc lemperm Llrc The adiabatic saturation process and its representation on a Ts diagram of water The adiabatic saturation process is not practical To determine the absolute and relative humidity of air a more practical approach is to use a thermometer whose bulb is covered with a cotton wick saturated with water and to blow air over the wick The temperature measured is the wetbulb 0rd in ary thcrmomctcr Wetbulb thermometer rhulh ihannmucwr Dr ubxllb ihcnumnctcl A Wick ll39 ow Weblullli l Ihcmtontclcr vlck A simple arrangement to measure Sling psychrometer the wetbulb temperature I wa and it is commonly used in A C applications For air water vapor mixtures at atmospheric pressure wa is approximately equal to the adiabatic saturation temperature THE PSYCHROMETRIC CHART Psychrometric charts Present moist air properties in a convenient form They are used extensively in AC applications The psychrometric chart serves as a valuable aid in visualizing the A C processes such as heating cooling and humidification Drybulb temperature Schematic for a psychrometric chart Saturation line a 3 5 W13 15 C Tap 15 C 5 C 2 z a s s e a quot2 2 ll 0 0 if 0 15 C For saturated air the drybulb wetbulb and dewpoint temperatures are identical Today modern airconditioning systems can heat HUMAN COMFORT cool humidify dehumidify clean and even deodorize the air In other Words condition the air to IRquot peoples desires CONDITIONING The rate of heat generation by human body depends on the level ofthe activity For an average adult male it is a out 87 W When sleeping 115 When resting or doing of ce Work and 440 W When doing heavy physical Work When doing light Work or Walking slole about half of the rejected body heat is dissipated through perspiration as latent heat While the other half is dissipated through convection and radiation as sensible heat We cannot A body feels comfortable When it can freely dissipate its Waste a and no more air 39 conditioning In an environment at 10 C With 48 The comfort ofthe human bod kmh Winds feels as cold as an depends primarily on three factors the environment at 7 C With 3 kmh drybulb temperature relative Wind as a result of the body humidity and air motion chilling effect of the air motion the The slams humldlty a eds the WindChi fact amount of heat a body can dissipate through evaporation Most peo le prefer a relative humidity of40 to 60 Ai mo on rem Warm moist air that builds up around the body and on hould be strong enough to remove heat and moisture from the vicinity of the body but gentle enough to be unnoticed An important factor that affects human comfort is heat transfer by radiation between the body and the surrounding surfaces such as Walls and Windows Other factors that affect comfort are air cleanliness odor and noise AIRCONDITIONING PROCESSES Maintaining a living space or an industrial facility at the desired temperature and humidity requires some processes called air conditioning processes These processes include simple DD heating raising the temperature simple cooling lowering the 9 5 temperature humidifying adding 39 39 t d d h 39d39 39 539 moIs ure an e um ifying Cooling m removing moisture Sometimes two or more of these processes are needed to bring the air to a desired temperature and humidity level Air is commonly heated and humidi ed in winter and cooled and dehumidi ed in summer Various airconditioning processes gt Heating mg Dehumidify Most airconditioning processes can be modeled as steadyflow processes with the following general mass and energy balances Mass balance lilm Iilwl Mun lmumu humijiir E lll Elll kg x u will a A v Mun Ilaum lm iuz I Z lll v 2 m m a ml n m Hm Energy balance Em 0 w Emu rig Emu m m m m The work term usually consists of the fan work input which is small relative to the other terms in the energy balance relation Simple Heating and Cooling to constant Many residential heating systems consist of a stove a heat pump or an electric resistance heater The air in these systems is heated by circulating it through a duct that contains the tubing for the hot gases or the electric resistance wires Cooling can be accomplished by passing the air over some coils through which a refrigerant or chilled water flows Heating and cooling appear as a horizontal line since no moisture is added to or removed from the air During simple cooli specific humidity remains c nstant but Water mass balance ul 2 1 relative humidityin reases Energy balance Q 1311111 II or q I II Dry air mass balance mu IiiH Jim l 3 80 Healing coils 452 bl e 30 l A i1 T2 gt Tl 11 I 5020 wzconstanl H8 112 lt 1 Cooling During simple heating specific humidity remains constant but relative humidity decreases 12 C 3 C Heating with Humidification Problems with the low relative humidity resulting from simple heating can be eliminated by humidifying the heated air This is accomplished by passing the air first through a heating section and then through a humidifying section Dry air 1mm bulum39u Ill 2 Illw Ill WEI39139an hulunrc mule hurt3 4 a m Energy lmlum39c Qquot mull mull Qm Iii 13 11 Ililww2 Illquot Hymnal p ImH w 2 Heating coils l H Hum1d1 fier I l O 3 Alf 012 a D3 gt 02 r 1 v 1 Healing Humidifymg section section Cooling with Dehumidification p quot39 L 39439 of air 39 4 39 a simple 39 but its relative humidity increases If the relative humidity reaches undesirably high levels it may be necessary to remove some moisture from the air that is to dehumidify it This requires cooling the air below its dewpoint temperature my m Hum Imhmn39 m m Warm 1mm Imlmir c rm m m m a m mm 7 m1 Enviw IquH39A 2am 9 2m gt Qmn 711 aimr mling unit iiiiimiii iii i i 39 39 ir J my JL mm I n I 4 39 I v39 I b mu H K t Y undunmlc V W In lumi rcmmul 394 F n lt In desert hot and dry climates we can Evaporative Cooling avoid the high cost of conventiona I I I I cooling by using evaporative 00095 This process Is essentIally Identical aISO known as swamp COO63 to adiabatic saturation process As water evaporates the latent heat of vaporization is absorbed from the water bo a dy and the surrounding aIr As result both the water and the air are cooled during the process A 7 mlmum W39nur lhul Icukx out Hol dry Air Water in a porous jug left in an open breezy area cools as a result of evaporative cooling Adiabatic Mixing of Airstreams Many A C applications require the mixing of two airstreams This is particularly true for large buildings most production and process plants and hospitals which require that the conditioned air be mixed with a certain fraction of fresh outside air before it is routed into the living space Mum oftiyuii39 Ill Ill iii Mum qf39u39arcrvapor mull ohm Ohm Emmy IllmIl Him13 dim1 m 7 m ll II m i in Ii h m 46 When two airstreams at states 1 and 2 Vrh39 are mixed adiabatically the state of the mixture lies on the straight line connecting the two states Wet Cooling Towers Power plants large airconditioning AIR EXIT systems and some industries l l l l l l generate large quantities of waste A heat that is often rejected to cooling WARM FAN water from nearby lakes or rivers WA Rl A A A A A A In some cases however the cooling V V V V V V V V V V V V water supply is limited or thermal pollution is a serious concern AIR In such cases the waste heat must NINLET be rejected to the atmosphere with cooling water recirculating and serving as a transport medium for heat transfer between the source C091 and the sink the atmosphere WATERZI one Way Of aChieVing this is through An induceddraft counterflow cooling tower the use of wet cooling towers A wet cooling tower is essentially a semienclosed evaporative cooler Naturaldraft cooling tower It looks like a large chimney and works like an ordinary chimney The air in the tower has a high watervapor content and thus it is lighter than the outside air Consequently the light air in the tower rises and avier outside air lls the vacant space creating an air ow from the bottom of the tower to the top Spray pond The warm water is sprayed into the air and is cooled by the air as it falls into the pond ooling pond Dumping the waste heat into a still pond which is basically a large artificial lake open to the atmosphere HHH A natural d raft cooling tower A spray pond WARM WATER c001 WATER MAE 321 Applied Thermodynamics Thermodynamics An Engineering Aggroach 6th edition by Yunus A cengel and Michael A Boles The Following Slides Are From the Instructor39s Section ofthe McGraw Hill Web Site and Have Been Modified forThis Course March 30 2009 Lecture Chapter 11 Refrigeration Cycles Objectives Introduce the concepts ofre 39igerators and heat pumps and the measure of their performance Analyze the ideal vaporcompression refrigeration cycle Analyze the actual vaporcompression re 39igeration cycle Review the factors involved in selectingthe right 39 n re 39igerant for an appllca io Discuss the operation ofrefrigeration and heat pump systems Evaluate the performance ofinnovative vapor compression re 39igeration systems Analyze gas re 39igeration systems Introduce the concepts of absorption refrigeration systems REFRIGERATORS t AND HEAT PUMPS The uansvev m heal mm a nw empevaluve u Vegmn m a mgmempevame one reqwes n um EL ii 3 m u h H n w mm H H mm h 39 W mm u Wm mm Ann Hmwedvamesmqand 24 The nblecnve m a vemgevatm mu vemnve heat q vmm the rum memum We mm m a neat pump sm sunmvheat DNMHa wavm memum The veversed Camm we sthe mustemcwrf vemgevmmnM eapevmmghetveen mm TN THE REVERSED Hawaven n 5 nm a suname made my vemgemmn CARNOT CVCLE cw es me man 124 and M ave rm mach23 be t w 39 Pmcess 273 nva vesme campvessmn ma mu drvspm y r mm Wmch kuwes a mmpressunhat Wu harm s m phases and mates M mva vesthe expanser m w h ghrmmstuvetamemvemgevammamvane r r Bath cops mease as We dmerenue betweenthetvw tempevmmes decreases thahs as n smmsus Schemauc m a c amm vemgevatm vans Fmagvam Camm was THE IDEAL VAPORCOMPRESSION REFRIGERATION CYCLE mg vlvnwmvv nn mngmum mlexsme mm my my remgemhan svslems Unhke he vevevsed Camm Eme me remgemm s vspamsd wume heme m s mmpvessed and mums svep aued m a mummy dew2 mm mmw m mm H m w hman m mmhw mm W um w u u WW w w m Smem aim and nuTagyaHmnheTueax vapmcammessmn vemgevahnn Cvde We Tdea vspmrmmpressan vemgevmmn We mvu ves an mevevsh e hvm hngl pmuessm make u a wave reahstu made Vunhe anus svslems Remamngme emansan vswe bvatuvmne Ts m7 maume swaths aaaea aenemseannmmswme added eas ana mmmew Skadv Hal1 enevw ba ance a MW a My T T m hauseha d vemgevmm We Fkhmagvam man aeaT vspm campvessmn vemgemmn DVD e ACTUAL VAPORCOMPRESSION REFRIGERATION CYCLE seveva ways awng mas vmme mevevsmmhesthm noun m vavmus campanem Juaon due a mud mman causes pvessuve amps ana hes ansver a aHmm We smmundwgs Thecov decveasesasa vesuh awvevevsthhes Schematmand Ismagvam Vanhea ua vapavrcampressan vemgevmmn cvde SELECTING THE RIGHT REFRIGERANT Sevem vemgevamsmavhe used m remgerslmn smemssuan as m avamammvhans chsL ammama decavhans mmpane emane eWene etc earaan dxaxxde aw nthe awmndmamng m awaan am even may n apphcatmns abavethe weenng pm ana Resu The Tndustna ana heavyrmmmerma seams use ammumam sum R41Tsusedmavgermpauwv mevmmerssevwv AC Wsemsmhm dmgs wuayemaaeawzmeaa ne avev edmdamestu remgevatms ana weezes as weu as amammwe aw mndmana R22 susea m wnaawaueanamaneys heat pumps aw candmanevsmcammevua Mamas ana avge Tndustna remgerslmn sysems am away smng campetman ma ma R5u2 a mend m R415 ana R22 S he aamnam vemgevam used m cammevma remgerslmn svslems sum asthase m Smevmavkets CchaHanmeumawm mmanam aq eeanasamsaaeyea aeswwnama Pvmemve amne Tavey andthuscamnhmmgmme gyeenhause e e thm causes E aba wavmng FuHan agenmedCFCsSmh35R M Re and e wame mast damagemme rms have wemaemmm ave mend vmthe amne BVEV have been deve aped mpa a Paametevsmatneedmh mnsxderedmthese edmnma remgemm are thetempevmmesa hew n News We remgersled saaee am The envwanmem mh Wmth vemgevam exma geshem HEAT PUMP SVSTEMS he must mmman enevgysauvue my 1139 n vnvquotVim ltreanxxvnnr Ziggy Mamemmm hes Pu and hemmg needs avresxderma m cammevua hu dmgs INNOVATIVE VAPORCOMPRESSION REFRIGERATION SYSTEMS The swmme vapurcummessmn vemuevauun We 5 the mus1 wme v used ve mevauun ewe and msadequatevuv mus1 Mngeyanun appucanuns The emery vapurcummessmn vemuevauun meme ave s mme nexpenswe vehame andpvacucaHvmammnanceruee mamycuncem A su 1m same appucavmnsme swmp evapumumpvessmn Mmevahun owe Ema12mm and needsta he mudmed Fm muuemew and verv mmempevame apphcauuns same mnuvawevemgevauunw emsaveused ThemHuwmucvc eswmbe mscussed I cascaueyemgevauunsmems Mumsxage cummessmn Mvmevauun Svsxems Mumpumuse vemgevauun W emswwh a we cnmpvessuv u uefactmnu39gases Cascade Refrigeration System Same meme apphcatmns vwwe madeva e v amempeyeMee andme tempevmuve mngemevmw ve Nev be m was my a snme vapmtampvessan vemgevatmn Evde m be meme The sahman 5 name i WWW Atvvurs age cascade vemgevatmn wstem w m We same remgevam m mm stages Multistage Whemhe mm oseoimaugmmme Esme Yemgevmmn svslem isme same m at oer between m Compression he 2 Refrigermon gym ems e sagesosn be repisoeo W 3 Wing chambev caHed a ash or me i has he ev hemtvansveychava evistc Aimsage campvessian vemgevmmn svslem wtha ash mamhev Multipurpose Refrigeration Systems with a Single Compressor Same apphmtians vequive remoemian s more than anetempevamve A mm and ecanamica appmach ism mute aHme exn sums m We mime entire sysem vi somemsmeno Ismagvam myarevvigeremeweezemmivmm anec mpvessm Liquemrion of Gases ham nuc depend on mama use mm in 50mm m axvven and mom m m memosquot m mop mums my moms he mm m makiia viavemes mum memos mimiroaisupeieanomw 1 s vevai innuva we me the noueemmn a gases LinderHamPsan svsleni my HmAeVWiE gases GAS REFRIGERATION CVCLES mg vevevsed Bmwan Ewe me gas remgemmn Web can he used my remgemmn F uquot V MW 1 mm mm gas remgevamn gyms mg gas vemgemnan WINES have L campvessmn vemgevmmn Dimes ar theveversedcammcvde gigs Yhevevevsedcammcv e I gt 572511133 hm Pmduues a gvemex n amaum gnsmgsygugn mangmav u ayes undev 51 mm IZCWM An DPewEv e awcrsn mahng svstem remgmugn webs mm swmp e hgmev mmpgnsms Wmch makethem sgugms Maw13quot caahng andmevcan mmvpgms vegenevatmn vwmgm vegenevmmn me av es urbm n e empevmuve s ammmpsyms m We sgnggngmgs manvmhev mahng medmm th vegenevmmn mg mgm ssure gasxsmnhev ma edm mews expandmg m themvbm ngsnngmgmmns m empemlme aummmxca wmv ersthemvhme em tempevmuve Wmch sthe mmmun tempevmure mhe mus w Ememe ymw e pavaluves nheamxeved W Mm by vepeahng vegenemtmn pmcess Gas vemgemtmn cvme mm vegenevmmn ABSORPTION REFRIGERATION SVSTEMS gaaaanaaaa nae Ammama ahsavmmn vemgevmmn Eve s na eve amva aas Wnen m s Absmptmn vemgevmmn sysans AR 5 mvmveme absuvmmn m a remgeranthv a Iranspunmedwm rna nas waaw asaa system s he ammamarv atev Wstem Wneve an mums NH a sewes as the vemgevsm ana may van as the Ivanspan medmm svslems Wneve nam sevves as Ihe vemgevam rnasa mans ave hmIed In appnaanans sum as AC Wneveme mmmum empayaaya s shave the naanna Wm M nam Cmpavsd WM vapanannmassan sysans ms nave ane warm advantage A mum s mmpvessed nsaaa ma Vapm ana as a vesm the vka mm s vew smaH mnthe avdev m ans Fey22m auna heat sAPphed In the genevsmv ana anan nimeded mna cm ana vsxs ARSaveanen ass a x x S E a 35 as is 3 a a i 3 gt 2 2 n s 2 WW 2 a enevgv as Inwand S pmyeded In remam Inwve mwem e e ncn w v HR 5 ave pnn a asaa n mvge cum merma ana mdusma nstaHa mns a gt H n I nanan 39 U n n n mm may na con a aaaa aasaanan Q V immy anaayaansasanssaaanass a s nann U W M Anaanananna sasans aasaa aasaaananaaaaanaanan manaaama aanan aas whybanned nan na naa an sApPW quotW heat at a wgmempevamre wth Mme anaayaaa map as 7 Im n n y n aaannnana naanan con a Tu L snabsuv mn an n1 anaayaf ansasan m amp up K MAE 321 Applied Thermodynamics Thermodynamics An Engineering ggroacn Gin edition by Vunus A Qengel and Mionael A Boles Tne Following Slides Are From lne lnslm dor s Sedion ollne McGraw Hill Web sile and Have Been Modi ed lor Tn39s Course Annual 2an Leclure Objectives Dl erenllale belween dry arr and atmospheric arr De ne and caicuiale lne specmc and reiallve normally oi almosphenc air Caicuiale lne dewpalm Iemperalure oi almosphenc air Relale lne adiaballc salurallon Iemperalure and welbuib Iemperalures oi almosphenc air Use lne psychmmelnc enan as 3 incl Io delerrnlne lne pmpemes oi almosphenc air Appiylhe prlnClpies oflhe conservallon of mass and energy In various airCondlllomng processes DRY AND ATMOSPHERIC AIR Aims hericain Ar ineaimas nerewnialnln F W p 9 IN UR Waler vapor in lne alr Diays a mapr role in human aornron Thereiare n an lmpvrianiwnslderailan mu l lnalrwn onn a lawns W s d 9 pm mun n ll iixrlliilirll rm mm 39 mm en iAI nnmlrl mm H lev oralr oe Tn Walervaporlnalroenavesasniexlsleo alone asso anoooeyslne oealgasrelalonpv Rr Tnenlne all DDSkJkg 39Clnine aimeSDnerlcalrwn oe lrealeo asan ldeai gas rrnxlore lo sn39c win an error oroernzna iquot lH l P Panel pressore moryalr Pv Panel pressore olvapor vapor pressorel n msrrreewarer kg a we vapor rsarr near gas mkg ca 1mo5ncrarrge r r m rm r 7 m ore emperature range rMm hum r urrrsr r lt0 Eemw sncv are n 0mm rrrres oorrreroe war are r 0mm hne5 rrr ore 5upemeated vapor regmv orwarer SPECIFIC AND RELATIVE HUMIDITY OF AIR Absolule or spec nmrmzyramr The par p va hum39 y up mass or wa er zs39cwn pp re5emmaunnma5somryarr w mm mum u mhrhmul kde mr V org y rpm mam Forsarvrareo arrv ore vapor pressvre rseovar o are sarvratorr pressvre mwmer asan rr r r r PVltJ15 nPn unumnl dlir maxrmvm amoum rroro a are same emperarvre mg Sputl chmmd y u m V F P Rdmivalvumkllly pm r N r Trreomererreeoerweerrspeeme and reratrve rrvmronres What rsrrre rerarrve rrvmronv e rr omrvarr and saturamd arr 7 rrrr vrrr m mos pramrmr apphmhons me amoum Mdryarr rrr ore arr watervapormpdure remam5 constant ovnrre amovrrrorwarer u r rur x mom r apor errarrges Theremre me errrrrarpy or amoSDhenc arr rs expressed per umf mass 0 dry so r r rr rr rquot r r 39m v u o IIvlrUM lly rr The enme py or mosr armosprrerrer arr rs r rHthsrlH The ordmarwemperamre mm massormorsrarr atmosphem arr DEWPOI NT T oorresporromg to me vapor essure T Constam pressure eoong oT mom ar and the dew pomnemperamre oh the T soagram oiwa er Jme39 NM Whenmetemperalurec a 4mm comdrmkrsoevowthedew dr mm pomnemperamre onhe surroundmg am A quotsme quot ABATIC SATURATION AND W 11 l hum m WETBULB TEMPERATURES r Tr H WW Gm AJK I HW WWW m mrr Mm mo rm h murmur r r hr earrmrr Tr lr rrr wr w The specM humvdmy and reTame hudeTMolaT can be de ermmed Trom these eouahors o measurmg the pressure The summit saluramn and emperamre oT arr 3 the mm and the process and TL represemamn eonVanadTabahcsamramT orra Tsoragram mwaler The aoaoahe samraho process rs ml praemT To del rmrrreme r war mm T mmmlu UThumv Hmmmuum 39Tck samra edwmv I and o t hqum ar over me W T e emperamre w m AsrmpTe arrangement to measure smo Dsycmo e er re measured rs mm the wet ommemperam am A rsmmmo FoTaTT watervapor meturesa almosphem used mA 9 pressure n Tsappmxmate yequaHome apprmmm adTabahc saturahon emperalure THE PSYCHROMETRIC CHART The used ex ensweVy h A c app uhans The psychramemc ehan serves asa Va uah e ad rh vrsdahzhd the A c prdeesses such as heahrrd eddhhd ahd hdrhrdwwahdh Drybmh cmpcmlulc Schematm dra psyehrdrheme ehan m Far samrated am the dry mm we mm ahd dew WM emperamresare denhra Taday mdderharedhdmdhhd sys erhseah MEL HUMAN COMFORT edd hdhrdry dehdhdr em ahdeveh daudanzetheav hdhermerds candn mntheaxrta R paup es desves CONDITIONING The ra e d1 ha deherahdh by hdrhah hady depehds dh he Leve dnhe adrv y Far a average addu mare M sabvm a w wheh steephd 11 wheh reshhd drddhd af ne Wdrh ahd m w ddrhd heavy physxw mark Wheh ddrhd Ugh wrkar wa kmg 5 aw1y aedm haw dnhe reeded hady hea s dssrpated Waugh rsprrahdh as tenmeatwme the ether haw s dssrpa ed Waugh edhveehdh ahd radahdh as senslble heat 5w wheh quot w Aeddyrees edmrdnaere wheh heat arrd W rhdre rh ah erwrrdhrheh a we wmh 43 The Wm39ar dnhe hdrhah hady kmh Mnds eers as add as ah depehds Dnman y dh hree addrs he errvrrdhrherd at 7390 wmh 3 kmh drybulb Icmperaime rela w wrhdsas reSuMaHhe hady humidlly ahd alrma an ehruhd e ee duhe arr rhdhdh he windchm Esta s dhd errdddh d erhdve heat arrd rhdrsmre rdrh he vrerhrcy d be sdrva haswausahd wrrrddws other addrs that a Wm39ar are arr c anhness dddr ahd hdse AIRCONDITIONING PROCESSES Mamammg a hvmg space orarr mdusma aermy at me aesrrea emperalure and mummy reqmres wed arr e L39mvhug es r oreomrese processesare needed 7 Drmg me armaaesrewemperamre and numnrqyxevex Arrrsmmmonry heated and humvdmedmwxmeramcomedand mer denumrmned m sum 7s us srr sand in HQ processes Most srr condmomng processes can be mode ed as steam ow pmsesses wrm me foHovmng genera mass and energy ba ances Mass ba ance mm mm quotrerm r rrrr 2 gm Arr rmwhirth IN m in rH Energyba ance lm Uh Vrrrrr e r rrrr The workterm usuaHy sonsrsts cf the fan Work Input wmch rs smaH re ahve to me mherterms m the energy ba arme rewanor Simple Heating and Cooling a constant n95 seem eves resz Oran e ednc resmame heater rne er m mesa systems re healed w cwrcu a mg Atmoth a M ma comamsme mbmgmrme m gasesorme e ednc resrersree wves 200th can be accomphshed w passxng me er over some mx smmugh Wm a remgeram or cmued wa erwows Heamg and coohng appearas a mnzonla me me no momma reseeee m or removed rem me aw Dunng 5xmp e moh quot1 mummy remarrrs re a we nummyr 7 hr ylzw mum mm Hm mm ewe ream swan numenyremsrrs wm am hm reeuve NAMde deueases r r Heating with Humidi cation Pramems wmh the La eeunhg mm empxe heahhg ah wre atrve mum yr he ehhhha ea by hummyhg the heated ah The e aeeampxehea by passmg the av rs hraugha heama 56d eh aha heh Waugh a huhhwhg seam Hummlwr Cooling with Dehumidi cation The spec m hummcy ah remamswns39amdurmg a empxe Wahng prunes hm r saw swah Whwvm 739 h th hwhhm vhheu qhh e 9 mm M h m m h aeeen hat and um chmates we eah Evapo a ve Cooling vmd he mgh emmeahvehhahax r mm by my mpwm mm The pmeees he eesehhauy mehmax aLw kmwn as WW WWW aaa aaamawaah Ar water evapmaee the Water heam vapahaahahea ream hewaer m 39uummu hawamm mm As henhwm Mam m m Hm uh ater h pmwew M hah apen breezy area ems a5 a resuM a evaWrahve Wahng Adiabatic Mixing of Airstreams Many A 0 applications require the mixing of two airstreams This is particularly true for large buildings most production and process plants and hospitals which require that the conditioned air be mixed with a certain fraction of fresh outside air before it is routed into the living space Mlxmg mm i len M m min HI mm mm mm 39 w L m m Imwl m If m h 1 th When two airstreams atstates 1 and 2 are mixed adiabatically the state of the 39xture lies on the straight line connecting the two state Wet Cooling Towers Power plants large air conditioning systems and some industries generate large quantities of waste heat that is often rejected to cooling water from near y akes or rivers in some cases however the cooling in such cases the waste heat must be rejected to the atmosphere with cooling water recirculating and serving as a transport medium for heat transfer between the source F00quot and the sink the atmosphere AIR VINH J I An induced On way Ul the use of wet cooling towers A wet cooling tower is essentially a semi enclosed evaporative cooler A I ordinary chimney The air in the tower has a high water vapor content and thus it is lighter than the outside air Consequently the lightair in the tower rises and t h avier outside air lls the vacant space creating an airflow from the bottom of the tower to the t p Spray pond The warm water is sprayed into the air and is cooled by the air as it falls into the pond Cooling pond Dumping the waste heat into a still pond which is basically a large arti cial lake open to the atmosphere A t I i l l i l 1 mg ma A spray pond cooling tower WARM WA39HTC MR Lg kg INLET COOI 39 l 3 1311 A IER MAE 321 Applied Thermodynamics Thermodynamics An Engineering Approach 6th edition by Yunus A Qengel and Michael A Boles The Following Slides Are From the Instructor s Section of the McGraw Hill Web Site and Have Been Modified for This Course April 8 2009 Lecture Chapter 12 Thermodynamic Property Relations Objectives Develop fundamental relations between commonly encountered thermodynamic properties and express the properties that cannot be measured directly in terms of easily measurable properties Develop the Maxwell relations which form the basis for many thermodynamic relations Develop the Clapeyron equation and determine the enthalpy of vaporization from P v and T measurements alone are valid for all pure substances Develop general relations for CV op du dh and ds that Discuss the Joule Thomson coef cient Develop a method of evaluating the Ah Au and As of real gases through the use of generalized enthalpy and entropy departure charts A LITTLE MATH PARTIAL DERIVATIVES AND ASSOCIATED RELATIONS fH fxAx f Ax Slope x xAx The derivative of a function at a specified point represents the slope of the function at that point X f 39ltn LII II The state postulate The state of a simple compressible substance is completely specified by any two independent intensive properties All other properties at that state can be expressed in terms of those two properties I x y A 7 IlA1H Inn 39 1 Inn A uAy 3 u Ar The derivative of a function fX with respect to X represents the rate of change of fwith X Partial Differentials The variation of zx y with X when y is held constant is called the partial derivative of zwith respect to X and it is expressed as All Aim iii 39 ALA i ll The symbol 6 represents differential changes just like the symbo 0 They differ in that the symbol 0 represents the total differential ch ng ofafunction and reflects y the in uence of all variables reas 6 represents the partial differential change due to the variation of a single variable The changes indicated by dand a X I I are identical for independent GeometI39IC representatlon 0f variables but not for dependent partial derivative Bzax y variables Tn uhlillll ziliuli fur the mini differ Illa wining ii 39I i H lm lll llll lr Ill and k39Ulhllel39 mmll pmmm of Hit mr H l ll 4 When llic llIdCPL HLICIll l il v i and 39 thin ls iml Av rcxpt cliwl mu ilcp litlciil iriihlc cluingcx by A llllL can he L lukl n 71J AVIll Adding 39llILI uhirziiiing l L l Au c gel A li Am i h s r r Ail li lt7 A im ur Geometric i AL A A 7 i i ii A P tl 4 Ax 7 rim A representation of i7 y m m total derivative dz for Taking the iimm m A A U ml A gt U ml win me tin dei i ili e nhiiiiii I if tliili39lttlv lquot ll Li Ax v Ayl mm or mm a function zix y This is the fundamental relation for the total differential ofa dependent variable in terms of its partial derivatives with respect to the independent variables v AA y Ai Partial Differential quot 39 quot FlillC lUi lI In 5 II J llll ani ii r M and N ur 3 HM r39iV quotT untl m y m ri39 m ri m The order of differentiation is immaterial for Thuquot properties since they are continuous point functions and have exact differentials Thus 1i Demonstration oithe 7 reciprocity relation for the m T in function z 2xy 3yzz 0 Reciprocity relation 7 Cyclic relation THE MAXWELL RELATIONS The equations that relate the partial derivatives of properties P v T and s of a simple compressible system to each other are called the Maxwell re atlans They are obtained from the four Gibbs equations by exploiting the exactness of the differentials of thermodynamic properties llll l39tlx 7 lev u u 7 l Helmholtz function Iii TIA WP y l e T Gibbsfunc on ttl tin 7 Ttl 7 LIT In 7 IT 7 PIN 15 111 7 139 it e A ll dquot it lT thP 5 w lt M UN Maxwellrelatiohs are extremely m 7 ii39 l M I N My gt valuablemthermod be use rov m ap m p determining the change in entropy 5 7 77 7 which cannot be measured directly quotV m A quotV I T i by simply measuring the changes in M W m N properties P v and T HI lt m gt II T 7 3 These Maxwell relations are limited t ms I 0 simple compressible syste Maxwell relations Cl lhlklcl39 In llnnl lll rclullun Eq l2 l8 up m lI V Al I i not lllc pl t nlll c i lln mluruimn 31L lll39 ller uni Intl illtlcpcntlcnl ul39 lhc xpuul quotI39 ct ic whimcI 1ullxl mlll Il lu cll st39d I l 01le llcrl Iliull 1x lhl Inpc nl39 Ilw 4 ll mlwn mine on in I I39 mi n l Ptk39l cd ulllllllHll llilc l I L TIIi lan i Imlcpcntlcnl ul IIIc pcrllic ulmnu HIM llll it can in he ml tlunug Ihc mlugmnun nl EL 11 IX h lllu ll lhc mmc mnpcmlm more I39m ummplc Iht llll lL l ClllfL IR pzlrlml nlcmuliw HIP U lliw IF17 r ml cmccn l n uiumlmn nr m wilmnml llqlml mpur PIthChlllgc Ilinu iclkls r 7 7 11139 V y in will Vr 12 20 4 3 4 t Dunn llu pmw Ilu Hewlll39v ulw wuumx cuINuIIl 39l39lwuInrc IIml E4 I ll 1272 a Vi H u t in 7m 4 will 1 rm 4 l Illx 11 7 7m Sulumuuug lhh l39vxllll mlu Eq I 31anhlmn 12221 THE CLAPEYRON EQUATION IT W Clapeyron TV equation COHSL sat The Clapeyron equation enables us to determine the enthalpy of vaporization 79 at a given temperature by simply measuring the slope of the saturation curve on a PT diagram and the specific volume of saturated liquid and saturated vapor at the given temperature T T The slope of the saturation curve on a PT diagram is constant at a constant Tor P d IT General form of the Clapeyron Ill VUL Mu equation when the subscripts 1 and 2 indicate the two phases The Clapeyron equation can be simpli ed for liquid vapor and solid vapor phase changes by utilizing some approximations Vk At low pressures Vt gtgt v p V RTP Treating vapor as an ideal gas Substituting these equations into the Clapeymquot Squawquot saturation pressure with rlP I temperature 1739 It can also be used in the M solid vapor region by replacing mg by hg the JP 7 1quot Mr enthalpy of sublimationof P my 7 I 39l 1 H the substance Integrating between two saturation states In P3 E LL Clapeyroni I M R 1 I m Clausiusequation GENERAL RELATIONS FOR du dh d8 CV AND 0 39 The state postulate established that the state of a sim e compressible system is completely speci ed by two independent intensive properties Therefore we should be able to calculate all the properties of a system such as internal energy enthalpy and entropy at any state once two in ependent intensive properties are available 39 The calculation of these properties from measurable ones depends on the availability of simple and accurate relations between the two groups ns for changes in internal 39 In this section we develop general relatio rms of pressure speci cvolume energy enthalpy and entropy in te temperature and speci c heats alone n r some The relations developed will enable us to determine the changes in these properties The pro erty values at speci ed states can be determined only a er the selection of a reference state the choice of which is quite arbitrary Internal Energy Changes honse he inlernul energy to he a function of T and V hat is n MT v and lake ils 10ml diflbi39enliul lEq 1273 1111 lT IV a V m Uiing the de nition nl CV we have M ii lH II lv 12725 nv A Now we chome the entropy in he a function of T and v th is 39 MT V and lake ils 10ml differential M V in In in Iv 12726 if V er Substimling lhis into the TiIA relation In T1I I IV yields HY En lu 1739 77 7 1quotle 12727 til V W Equzning the coefficients 01 le and Iv in Eqs 12725 and 12717 gives aquot m I gt T gt 7P 12 28 av 7v Using the third Maxwell relation lEq 12 18 we gci El 397 u TltvPgt 7P ll AT V Substituting ihis into Eq 1215 we obtain U18 desired relatinn or In 39P In 1 IT 7 1 1229 39 v The change in internal energy 01 a simple compressible system associaied with a change of state from Tr V K 1T1 v3 is determined by inlegi uiion quot ill n 7 HI I m llT I T 7 I W w Enthalpy Changes The gcncral relaiion for Ni is dcicmiincd in exactly he same manner This iime we Choose he enthalpy to be u function of Tund P hail is Ii liT P and mks its total differeniiul irli 7 HI 7 ill LIP iI MI Using he de nition My 8 have 77h ill plT TPgt UP 12731 Now we chme the eniropy m be a function of T and P Ihul ii we lake 5 sT P and lake ils lol l differential 7 0 17 m LIP 12732 I VP Subsiinning IhlS into ihe T I reunion II T ck v IP gives illt 11T V A 12 33 at ill Equuiing Klk39 civclliciclilgt UK 17 ilmi ill in Em 127 um 12733 we nhluin in NT m 7 v l39 397 12 24 VI39 vl 39 mm 124 we have he 39mlrlll Minucl r ih v 7P i SIhliluli hix llIlU Eq 273 us uhiuin lhu daich Icluiimi lnr quot11 w ill I N v 7 I39ltTTVJP 127357 Thc aim in cmlullpy om ximpx L39uiuprcswihlc we imam with a Change i ii num Tr P 101T Pl i dcicrmincil hy inlcgrninn i ii iii 7 h 7 l i II I 77 1N Hrill U246 1 7 ii lnmi E 12730 I w uiizihlc In me um Al IIC nlc miiun urcnimlpy In m ly uni necdx mil 1 7 li i mm B 1771 n m 7 7 ii 7 U 7 H F 4139 V 7 lquot I27J7i Entropy Changes Thc l rclulmnisohulincdhyl cplucinglhcli l zll39liuldL39 l in he mull dillererrllal ll Ell 2721 by Err 1quot 7 and llleaecond pumul deriva live by the mard Maxwell relMum Eq 1 71yleldillg V2738 and 2739 The Sccnlntl relation ls llbluincd by rcplucing lhc l rrsl pulliul Llcril 39vc m lm mull ulll crcnliul or I Ell W 2 hl Err l2 and he sch mu pxlrliul derlvative by he rumm Maxwell relation ELI mm yieldlll A 7quot MT 7 lI 12 40 and A I I r 7 M r M 7 lll lull l r Eilhel39 relation can he med 0 delenuine he enlmpy change The proper Chuitc dcpcmk ull ml Llulilublc hull Specific Heats CV and an Al low pl Cerm 3 w hchmc chul 1 r d lllcir speci c hcdl esltenlially depend on lempe lure mlly Thcw speci r healx are called 7r 39 ll39 or Halligm llm 39Ilmls lLIelmleLI W mm CW and Ill l 2 e JUVC A cl lo dctclminc Thus il Icsi lhlc 0112VL mm gen Hulls lml ermlwle us In L Iculule llle specihc heals nl h39 Inwer speci c vulumesl rmm a knowledge nf W m u subslunccl Such rclulinm er ohluincd by lpplyinu lllc V 1275 ml Enlx 12738 and 1140 MCI yicldx fl139 Z T 1 024m A l Mr 7 7r i 0243 up r r The devinliull 0139 g from 1quot mm incremng pl39exsure l nr example ilt deler mined by imcgrauing Eq 243 rmm 1cm prmurc m any preesurc I along rm rmlhernml full I IV I l EI39 pressures mr and me Pv l bclmviur ol39 IIIC 0 c lunch rElt ll ml H244 Another desirable general l39eltttitin involving ce ie tents is one that relates the two speciile heats 7 int l v he advantage of such it relation is obvious We will need to determine only one speci c heat usually r and calculate the other one using tlittt relation ttnd the PV T dtittt if the substance We start the development of such tt relation hy equating the two tlr relations Eqs 12738 and 1240 and solving for lIT I39thr lTV I l 7 t T Vl 1 IT v 39 tIP v ll 7 v 39 Tlv I ttnd differentiliting we get 0T 07 HT 7 tlv 7 ZIP lt PIP V eqttttittg lhc coef cient nl eithet IV or IP 01 the above two equations gives t39lt HP It 7 12 45 ill ttr r the desn ed result An ltlle ttttr rtnnt 0 thin rcltliltm intihtltined by thing the the elntitnt FIP FIT ilv r39lP ilv t39lP V l 14 i V tT V tv rIPI rtr V tlT w Sllhsliltlling the I Culll inlu Eq IHS givquot tit3 1W 4 it rl 245 it ill This rehttinn can he expressed in lel39llh or two ntlter titertnntlyttttntie proper ties Cttllcd the volume expansivil t ttntl the isothermal compressibility a which tire de ned as Fig 1240 g 7 IKE 1247 39 v quot739 ttntl tv r r lt ttHat v tP sirhstitrtting th e twt relatintt into Eq iHn we ohlnin a third general rcltttittn lor 1 7 tv tl39pquot Mayer t relation 249 7 U1quot Mayer i relation Conclusions from Mayer relation 20 2 1 The right hand side of the equation is C C inn kPu Hm szI always greater than or equal to Zero 1 kg 1 kg Therefore we conclude that lv 3 V n A subslance wilh u Iurge 2 The difference between op and CV av approaches Zero as the absolute temperature approaches Zero 1 3 The two speci c heats are identical for g i truly incompressible substances since v constant The difference between the two 20 21 C 100 szi 00 MPH speci c heats Is very small and Is usually 1k I M disregarded for substances that are nearly incompressible such as liquids and solids b A subsluncc Willi zl smull The volume expansivity also called the coef cient of volumetric expansion is a measure ofthe change in volume with temperature at constant pressure AIR The internal energies and specific heats of ideal gases and incompressible substances depend on temperature only EXAMPLE 12 9 The Specific Neat Difference of an Ideal Gas Show that CL cv R for an ideal gas Solution It is to be shown that the specific heat difference for an ideal gas is equal to its gas constant Analysis This relation Is easily proved by showing that the righthand side of Eq 12 46 is equivalent to the gas constant R of the ideal gas 1 we M P39 I a T DU RT up RT P p a w v IV v v R39I iiv R 3 V i gt 7 I a P Substituting HP r39lV 1v T0T T Th erefore THE JOULETHOMSON COEFFICIENT The temperature behavior of a uid during a throttling h constant process is described by the JouleThomson coefficient The JouleThomson coefficient represents the slope lines on a TP diagram lLJ r T PI x00 kPu i 39 all r P2 T 2 P if Ti varied fixed lt icmperuturc inc39 icmpcmlurc rumums cunxluni gt lcmpcmlurc deviance ofh constant constant line 200C 20 C I 200 kPu The temperature of a uid may increase decrease throttling process i 0quot remain COHStam during a The development of an h constant line on a PTdiagram A throttling process proceeds along Maximum inversion a constantenthalpy line in the temperature direction of decreasing pressure that is from right to le righthand side of the inversion line However the uid temperature decreases during a throttling process that takes place on the left hand side of the inversion line It is clear from this diagram that a cooling effect cannot be achieved by throttling unless the uid is below its maximum inversion temperature This presents a problem for Constantenthalpy lines of a substance substances whose maximum 0 a T39P diagram inversion temperature is well below room temperature Next we would like to develop a general relation for tlte louleeThotnson coef cient in terms of the spCCllXC heats pressure speci c volume and temperature This is east eomplished by modifying the generalized rela tion for enthalpy change Eq Is 5 av aha 117 v7 r Hill HT For an It constant process we have tllt 0 Then this equation can he rearranged to give t 7 39I to 2 52 whieh is the desired relation Thus the lnulequotl39hontsott coef cient can he determined from a knowledge of the eonstanthressure speeilie heat and the Pltl T behavior of the substance of course it is also possible to predict the must ure speci c heat of a substance by using the JouleThomson coef cient which is relatively easy to determine together with the ev data for the substance FE EXAMPLE 12 10 JunieThuman Cneilicient at an llleal Eas Shaw that the JoulerThomson coetliclent at an Ideal gas is zero salutinn ll 5 m be snuwn that in 0 to an ideal gas Analysis For an ideal gas v RTP and thus tsp Substiluting this into Eq 12 52 yields av fiT N h constant line P7 P coincide THE A Au AND As OF REAL GASES Gases at low pressures behave as ideal gases and obey the relation Pv RT The properties of ideal gases are relatively easy to evaluate since the properties u h cw depend on temperature only At high pressures however gases deviate considerably from idealrgas behavior and it becomes necessaw to account for this deviation ln Chap 3 we accounted for the deviation in properties P and Tby either using more complex equations of state or evaluating the compressibility factor Z from the compressibility charts Now we extend the analysis to evaluate the changes in the enthalpy internal energy and entropy of nonideal real gases using the general relations for du db and ds developed earlier Enthalpy Changes of Real Gases The enthalpy of a real gas in general depends on the pressure T as well as on the temperature Actual V Q Thus the enthalpy change of a real 39 gas during a process can be evaluated from the general relation for dh 4 I39 I Ii 7 h I 39l39I39 V 7 T Lip g V rI For an isothermal process dT 0 process and the first term vanishes For a Path constantpressure process dP 0 and the second term vanishes Alternative S An alternative process path to evaluate the enthalpy changes of real gases Using a superscript asterisk to denote an idealgas state we can express the enthalpy change of a real gas during process 12 as Lil 7 hil 1170 7 l39f7il I I n 7W IP I W IP I 7 l v 7 v 7 gt r V V p H p 1 p T I39 11 It Ii39 M W 0 I 1l 111 I I p 1 P If 71 U u 7 4 Tl 7 JP v 7 Ed The difference between h and h is called the T I enthalpy departure and it represents the variation ofthe enthalpy of a gas with pressure at I a fixed temperature The calculation of enthalpy r departure requires a knowledge ofthe Pv T r behavior of the gas In the absence of such data we can use the relation Pv ZRT where Z is the compressibility factor Substituting 71 IP rr I Actual pmch puilu Allcmulivc 39 l r n IquotIquot W 39l39 Tun Lind I my i W 1 I i i M Enthalpy ii I I I Ir Jilinm departure 39 quot quot39 factor The values of 2 are presented in graphical form as a function of PR reduced pressure and TR reduced temperature in the generalized enthalpy departure chart Zh is used to determine the deviation of the enthalpy of a gas at a given Pand Tfrom the enthalpy of an ideal gas at the same T It a i ll 7 It leI R J39JZH a Z Fora real gas during a It il ll iI lbL 1 RTJZH ZH l process 12 Ti blink from ideal gas tables Internal Energy Changes of Real Gases Using the definition 5 i7 N 171i ZRHT a v at 17 fine 1147 Kim Entropy Changes of Real Gases General relation for ds T l t i T r w P T39 P or t 1 Ai i Using the approach in the figure rii 2 Vi in V H i a ti 39l i 1 i i Actual process path During isothermal process i iJr Ur i39ilr 0 I if VII V 7 IV 71 iI el iI gtI iil Alternative process path v ZRTP v mm RTP quot l ZR quot ip iiiwti l P 73939 W S I I quotI quot An alternative process path to evaluate the entropy changes of real gases during process 12 7 l rl39N Lind P I HI N V TJH M 39 Emropy i e T H in PM depariure It i facior ii Tim Emropy depariure The values of Zs are presemed in graphical form as a funciion of PP reduced pressure and TR reduced iemperaiure in ihe generalized entropy departure cha Z5 is used i0 deiermine ihe deviaiion ofihe emropy of a gas ai a given P and Tirom ihe emropy of an ideal gas ai ihe same P and T T 7 1717 TQM 7 ml 7 Z Forareal gas I uringa M 3 mm 39l vi process12 Ylui il fromihe ideal gas relaiions Chapter 13 Gas Mixtures Objectives Develop rules for determining nonreacting gas mixture properties from knowledge of mixture composition and the properties of the individual components Define the quantities used to describe the composition of a mixture such as mass fraction mole fraction and volume fraction Apply the rules for determining mixture properties to idealgas mixtures and realgas mixtures Predict the Pv T behavior of gas mixtures based on Dalton39s law of additive pressures and Amagat39s law of additive volumes Perform energy and exergy analysis of mixing processes COMPOSITION OF A GAS MIXTURE MASS AND MOLE FRACTIONS To determine the properties of a mixture we need to know the composition of Ola v llaslh nr r rti r L 39 439 394 I are two ways to describe the composition of a mixture Molar analysis specifying i7 0quot H2 02 the number of moles of each component vaimetric analysis39 k0 32 k 38 k 39 D g g specifying the mass of each component The mass of a mixture is equal to the 0 sum ofthe masses of its components V ill lel l H2 02 H 01 ml 2 Mass ll fraction 3 kmol l kmol 4 kmol quot i Mole The number of moles of a nonreacting mixture i radian is equal to the sum of the number of moles of its components Apparem or average molar mass The sum ofihe mass and a v A J A mole fraciiohs of a mixiure M E W a Z m39 a 4 I g 11 is equal io1 m J 77quot V m NM lm I uld Gas cohsiam 7 39 u H2 02 The molar mass of a mixiure yHZ mm m yo 025 M ATE v2 w 2 100 m m w m mw 21 M Mass and mole fraciiohs of a mixiure are relaied by The sum of ihe mole m N H H fraciiohs of a mixiure is 17 7 x i equallo1 39quot HA mum M 39 PVT BEHAVIOR OF GAS The predlciloh of ihe PvT behavior ofgas mixiures A E is usually based on iwo REAL G S S Gas A Gas B V T V T E PA Pu Dalioh s law of addiiive pressures for a mixiure o two ideal gases models Dalton s law of additive prusures The pressure of a gas mixiure is equal lo ihe sum o ihe sur s each gas would exeri if ii exisied alone ai ihe mixiure iemperaiure and volume Amagat s law of additive Gas A Gas 8 Gas mixture P T P T Z A B 7 P T VA VB VA VB volumes The volume of a gas mixiure is equal lo ihe m of ihe volume h n mixiu re Amagai s law of addiiive volumes for a mixiure of two ideal gases iemperaiu re an d pressure Julmi I m I39m I H V ml in Idt39ul gaixcx l l timiruvmnlc for Iml gnux JumpIR luu V Vi I I39 P component pressure V component volume P Pm pressure fraction V IVm volume fraction For ideal gases Dalton39s and Amagad39s laws are identical and give identical results 02 N2 100 kPa 400 K 1 m3 The volume a component would occupy if it existed alone at the mixture Tand P is called the component volume for ideal gases it is equal to the partial volume yVm IdealGas Mixtures PATW le NRiTmVm N Z Pm NRTm Vquot Nquot quot I v v gt 39 VilePm NRT NV I39m V 7 7 z i V IVR TP IVquot 39 39 This equation is only valid for idealgas mixtures as it is derived by assuming idealgas behavior for the gas mixture and each of its components The quantity yPm is called the partial pressure identical to the component pressure for ideal gases and the quantity yVm is called the partial volume identical to the component volume for ideal gases Note that for an idealgas mixture the mole fraction the pressure fraction and the volume fraction of a component are identical The composition of an idealgas mixture such as the exhaust gases leaving a combustion chamber is frequently determined by a volumetric analysis Orsat Analysis RealGas Comprasibility factor Mixtures I l Z l39T E i z i Z is determined either at Tm and Vm Dalton s laW or at Tm and PmAmagat s laWfor each individual gas Using Dalton s laW gives more accurate results Pm v zm Nquot R Tm k Zn 2 yizl39 One Way of predicting the PvT behavior of a realgas mixture is to use compressibility factor Kay s rule Pscudnpiii c silhAlszc 2 P 7 mi T T l Another Way of predicting the Pv T behavior of a realgas mixture is to treat it as a pseudopure substance With critical properties Zm is determined by using these pseudocritical properties The result by Kay s rule is accurate to Within about 10 over a Wide range of temperatures and pressures PROPERTIES OF GAS MIXTURES IDEAL AND REAL GASES Extensive properties of a gas mixture l i 1 Eli Em E 3 iii i 7 H a i II Eli Emil EM U i i x Es T illK 4 vi Changa in propertia of a gas mixture My Al Elihill E AH l i 4 AH i l 2 All Em All i 4 EN 5 I i Axm 2 AS 2m At i 4 2 kmol A The extensive 6 kmol B properties ofa U IOOO k mixture are quot determined by UH1800 k simply adding the pr erties ofthe Um2800 k components M iii ll J K Extensive properties of a gas mixture i s u Emma up lxg unl m E in u klnnl H H i i 1an r idly null in r E Mir Ulmnll i i i FEM H39kgKl and T E Ll kmul K i i r i 1 m 2mm 4 gm uml 7 4 4er Llrkmugt39 iii H i l rm Sully lkJ39LgK ml 7 EM kl mini1 er iii Properties per unit mass involve 2 kmg A quot1855 Fad390 mi 3quot 3 kmul B The inlensive Igggerrrtfcs giwmb quotV m 17A 500 kJkmul properties are 7 mlxiure are The relalions are exaclfor ideal a 00 Ukmnl delermined by gas mixlures and approximaie for weighied realgas mixlures fl 560 kJkmol averaging IdealGas Mixtures Gibbs Dalton law Underlhe idealgas approximalion lhe properties of a gas are nol in uence by lhe presence of oiher gases and each gas componenl in lhe mixlure behaves as if ii exisls alone al lhe mixiure lemperaiure Tm and mixlure volume Vm Partial pressure of component i i As 552 51quot Ri In P u Also lhe h u cv and 0p of an ideal gas Partial pressure depend on lemperaiure only and are of component i independenl of lhe pressure or lhe at state 1 volume of lhe idealgas mixture Panial pressures noi lhe mixiure pressure Iquot T Y Iquot Alla 7h emu7 iwinf rmquot ii Pu l Rnlnpr are used In l evaluaiion of enlropy changes of idealgas mixlures RealGas Mixtures I ll rm 1quot 139 Um 11 Tds relation for a gas mixture 12 uh1 7quot E In ml39 V gt JP Zml dh 71 V Wm llll HI 7 xll39m V Real gas Real gas A B 25 C 25 C 04 m3 06 m3 100 kPa 100 kPa This equation suggests that t39quot g quot quot property relations and charts for real gases developed in Chap 12 can also be used for the components of realgas mixtures But TR and PR for each component should be evaluated using Tm and Pm Ifthe Vm and Tm are speci ed instead of Pm and Tm evaluate Pm using Dalton s law of additive pressures Another way is to treat the mixture as a pseudopure substance having pseudocritical properties determined in terms of the critical properties of the component gases by using Kay s ru e Real gas mixture A B 25 C a l m 02 kPa39 It is dif cult to predict the behavior of nonideaIgas mixtures because of the in uence of dissimilar molecules on each other MAE 321 Applied Thermodynamics Thermndgnzmics An Engineering Aggmach 6th edi nn by Yunus A cengei and Michael A Bales The Fulluwing slides Are From the Instructor s Sectiun ur the MchwHill Web site and Have Been Mndil39ied far This Course January 23 2009 Lecture Chapter 6 The Second Law of Thermodynamics Objectives introduce the secorid iaW of thermodynamics idehtifyvaiid processes as those that satisfy both the first arid secorid iaws or thenn y Discuss therrnai energy reservoirs reversibie arid irreversibie processes heat engines refrigerators arid heat pumps Describe the Keivihrpiai ick arid Ciausius stateineiits orthe secorid iaw or thermodynamics Discuss the concepts ofperpetuairrhotiori machines Appivthe second iavv ut therrh dvriarhics to cycies arid cyciic dEViEES seaie Describe the Carriut cycie rPfrinPratrir arid heat pumps Deterrnine the expressions fur the therrnai errieieneies arid EDEffiEiEritS or penorrnanee fur reversibie heat engines heat pumps arid retrigerators INTRODUCTION TO THE SECOND LAW Acup uvnm cu ee dues nm get mm m a eumenmunn Tnansmnng heat m a padd e WHEE n n n ii n W nm cause u m vmate These processes Tnansmnng Cannot occur heat m a WHE u I wequot 5 V M W nu are not w vwmatmn if swam ofme rst aw ebmncny Pvucesses uccm m a ONE WAY cenam dwectmn and nm 7 mme vevevse dwechun PROL m L lm m me my and secund aws u thevmudynammsm pvuceed MAJOR USES OF THE SECOND LAW The seeene awmav be user n me We dummy ewmeesses eene awa sn assensmal energv nas quaWas wen as quanmv nn awns eeneennee Mh we quanm m enevgv ane the tvansmvmalmns m enemy nenn ene venn m anmnen Mh ne neeam m n5 quamv rne seeene amevmesthe neeessaw meansm delevmme We quamv as weu asme eee e m eeenaeanen m enevgv un a mess 3 rne seeene awnnhevmn vnamms s a sn used m eetenmnmg We mememawnnsvenne peummanee m cummnmv usee engmeevmg svSlems smn as hea enemas and vemgevamvs as MM as maximum we degree ulcnmPemnmchemma veamnns RMAL ENERGV RESERVOIRS quot quot quotmm cm 10 at H mm t m u 7 A snuvce m u supphes enevgv m the Homes Mh ve awe v avge theyma quotW H u mne L massescanbemude edasmevma n 39 andasmk em enevgv vesevvnws absnvbs m nv uneevgmng anvenange m empevaluve s caHed a Ihurml memy vessumn nuus1 a vesevvmv n mamas avge n bnmesmwalevsmhasnceans wakes anmwevsasweuas We almasphenc aw ean mnde ed acmvale v as nevma enevgv vesen be vows because enneu avge theyma eneng smge capab mes nvthevma massesh I HEAT ENGINES m wmk r eyveceweheahmm amgw H empevauve snuvce my 1 enevgv nu mam nudeav mm M Wm H mm m I 1 Thevcunvenpannnmshea n Mum ka can a wavs wnvk usuaHv mm mm m a A A becnnvener n WWW 3 33 th 3 Thevve edthevemammgwaae mm W H e heamammampevamasmk vevme sm we the almaspheve vwevs elc m a Thewpeyamnnacme quot h m mm m Heat engmes and mm Cvchc devmes usuauv mom a mm a u h at 5er Va 9 anerm mm mm s comm m uansvem vme undemnmg a Wemmm yde TmsmmscaHemhe ve eded m a snk Winn quotum A Steam Power Plant m u u quotm I y m A woman the m mm p mahealengmewscnnsmed memauvm mamtam cummunusnpe m vain rm u mm m WWW Hum WWanmwm U W mv M ma lwm Mun m Wm M w W w n MAhm m Mu mm mm H rmmmmm WM mpm mmm MW x Thermal Ef ciency WWMW 7 m H m H n w it Schemahcm quot u u ahea engme 39 U 39 M H w 39 39 y 7L Evemmmmme qquot I 39 m M mm am mum mme as am We mm mm mm thanmhevscnnvenmmennhev heal mev vecewem Mm h a meam puwev p anL Can We Save am a muspheve EundEnSEY um unhe A heatrengme cyc e eahhm he cump eted The anWEY 5 Wuhum vejectmg same hemm 3 MW un39 unam y e 1th no tempevatuve Smk unhe mmpxe 1235 a hem WE my waste heeeheh pvucess h a 393quot mg m a cundensEHhe cyc e eahhm he cump eted m Evelyheat same eheygy by uwrtempevamve VESENDH m uvdev EVEH u tucump e ethecyde heey deahzed euhmnuhs The Second Law of Thermodynamics Kelvin Planck Statement 39Dwmultm 39 mm my mum duceanetamuummwmk n 1 Nuhemehgmmhhmmem 7H e mermy M11717 pmehc m as my 39 awe mm eraeMewmkm ow Ahea engme ha w a es he 2mme 5mm M g KeMnltWanck mmehem anhe ehwahmehe as hem the furnace sewn BW rhe mpassb v m hmme a1EIEI ed andme amum hem enehes REFRIGERATORS AND HEAT PUMPS mmpevatuve medmmm a mghr mmpevatuve uhe veqwes Spema R emgevamvs hkehea engmes me cych dewces Thewuvkmg we used h the yevhgeymmh cyc e 5 caHed a refrigeran The musmeeueh se yevhgeymmh cyc e mhe vamp mmphessmh hehgehmmh cycle h a hausehmd Yemgevamr Me quot22121 Esme mhpahehes m a mhpanhem Wneve hem he ahsmhed bvthe hemeehmmh SVSIEM and 2quot hem he pa ed a We when aw sews Esme candensev mm apevaune mndmans usua W hehmd We vemgevmav Wneve mss 39nHHv HHNm Coef c ent of Performance m s n he Mecmenessma vemgevamv s quotx I an m pm 1 r exmessed m evms pups ener anrrmncE COP The nbleclwe m vemgevalnv stn vemnve hea 00 39mm We vemgemed spspe nm up n HM s 7 7 s Ylu mhxlmyvm My y mu ufr s pp m 39r u Wu The nbleclwe m a remgevamv sm vemnve DL39mm me named Space Heat Pumps The nbleclwe m a hea Mn p M p 1 s L mm k W p M m u Canme w uen39COPM rm quot be nvmthan umW7 hatdnesCOP sem V 7 m mm W immedvamestLandDN When ms1suee backwavd an awcundmmnevmnctmns as a ma pump Mus1 ewshng hea pumps useme emu umswde aw asthe hea suuvce m WW EY Epsom HP ncumhma esthewemmencydmpscunswdevab ywhenmmpevamves ave be uwme eezmg pmm m p p hea suuvce can be used Suep hea pumps ave mme expenswe m n a k punpey ave a su mme emmem Airenn nnels ave basmaHy vemgevamvswhuse vemgeva ed spsee s a mum m a bu dmg ms1ese We and eumpsnmem tempevamve ThevemvE n 5 pm ecunumwcaHu vemgevate m a uwenempevamveman peeeee Enemy an mtyrallng1EERD The amount m heal removed quotum me cpmee spacem musmm WMwa hnuv me edncnvcnnsume 1w up 5 The Second Law of Thermodynamic Clausius Statement um Us wpussmxem cunshum a dewce 0m upevates m a cyc e and pvuducesnu evvem r m Uthenhan hetvan ev u heathum a we lempevamvebudym a mgheHempevamve may r A states mm remgerahzrcannufuperafe Mess ts mmpressmrs driven w an enemapaw suurce such as an e ems mum y e A u mmm M m a wee mm a Wemey me A WWWW m mete rm expemem has been canduded we wa atesthe C ausms cammmdsthe secand waw and thxs shau d he smemem a he semnd qexenessmempyaavavusvemuy avv m Equivalence of the TWO Statements pmmmmm KWer x smemenn ads w u athevm m anhec ausms u A A A mem The KemmP anck andme C ausms statements ave Eqmvs em m mew cansEquenceS and enhev smemem can he used asthe emessmn a he secand avva hevmadvnamms Anv dew2 mm wmatesthe xewwrmem smemem a sa wmatesthe C ausus sta emem and wee vevsa 7 PERPETUALMOTION MACHINES A Pemetuahmmmn mememm atesthe secand awm madvnammSU MMZJ A pememam mmn machme we a wmatesthe ms aWPMM1 Perpeluzlemminn machine Any dewce 0m wu a es he ms1 uHhe secund aw A dewce hatku atesthems awby cream enevgy s caHed a PMW Adewce ha wu a esthe se and awws caHed a PMMZ Despne numemus anempts nu pevpetuakmmmn machme s knuwnm have Wuvked quotsomething sounds mo good to he nue kpmhah k REVERSIBLE AND IRREVERSIBLE PROCESSES an be evemhle times A Pmcess mm unlhe sumwndmgs lnevulhle mes A Prunesslhal ls nm vevevslhle My 0 w Internxtad m rmulhlevrnce s I lllhev are easvla analvze and lehev serve as Pvacessescanhecampa e Pmuesses are mare mevevslhle lhan mhevs m lam may R veverslhle pvacesses We lea evevslble Pmcesses delwevlhe mas and cansume s1 vka Yhels mslhalcauseBmauesslahe r wveverslhle are called Inevulhllllles men renders a mevevslhle veaclmns aces mevevslhle We Presence avanv allhese enacts renders a m lrrever 39 l M at h lem H MW dmeven Mr M wvevevslhle 1 ianda lhe M WW pyacessls passlhl Internally and Externally Reversible Processes ushlevrnces n rm wvevevslhllmes accm esammaulsldel Q 5 i I u 3 Imullyrmulhlevmces lmvalves rm mevevslhllmes suvmundmgs anlhe haundanes m he Svslem haundanes mmn lhe svslem m we n n ellecls x mm W A vevevslhle pmees mm W New and mew and memallvvevevslhle heal xlemal wevevslhllmes quotWe messes M THE CARNOT H CVCLE r Execuuun u i We Camm cyc e m a N when heveyeme Amabatu Expansmn mmcess 273Aempevmuve maps quotam mu m Vsh e smhem 55 55 3 TL e mnstan Reva a Campve DHUJVDue Revevsh eAd b hccammesemntpmceseo empemmvensesham n 2 mew PVW aavam UHHE Camm cyde Prvmagvam unhe vevevsed Camm cyc e The Reversed szm Cycle The Camm hearehgme cyc e c a many vevevswb e cyc e Thevemve amhe pvucesses hat cemphse n can be reversed m whmh case n becames he szm refrigerminn cycle THE CARNOT wequot PRINCIPLES mm wmwmwu NW u rh We Cam mamas pmmuhe me cahm phhc me The emmency em wevevswb e heat ehgme c a ways essthanthe emmency Ma vevevswb e ehe upeyahhg between the same wu veseNuws The emmenmes emu vevevswb e hea EnngS upeyahhg heMeeh he THE THERMODVNAMIC TEMPERATURE SCALE Atempevatuve seatethat tthewmmm tatheepeheehtmthe m WA t t quot auehatempeyatmeaeate u n evs great mnvemences u htheymmtvhamte 39 myquot eatmtatteha 39 AH yeveysthte heat ehgthes apehatmg between the m e WW u vesevvuws have the t SW WWW rhe anangemeht m heat p thethehhnawam WNW tempevamve sate t 39t 25 utth thmttth new U H M V 1 w rhtatempeyatme aeate ta caHer he uaum scale mtmht tt I v andmetempevaluvesnn I Ibmwmv t thtaaeateayeeauett Hm ahsntutetumemtutes v uh ht tt 71x gm tt r h Fm vevevsthte was the A eehuemUat emenmehtat setup heattvahstenatte weL mdelermmethevmndvnamm can be vemaced bvme tempevatmes ehthe hethh ahsetute tempevatuve valm seate w measuvmg heat a n m1 tahatee n ah 25 THE CARNOT HEAT ENGINE Thecamm 39 heatengme WWW wt tt m emeehtet my theat ghea 39 npemmg hetweehthe samemghr WW Nu n eamghev h M emvm we emeehwthah a vevevstb e heat ehethe Vegewmvs upevalmg betweemhe same NEW and nw empevamve vesevv AW heat Camm heat ehethe ehehe tht mtmthttmm u r m rewr quot Uh quotquot 39 7 Iuv tmxth clvuu 27 The Quality of Energy Ilvgl rmwmm Nmm n m m wwwm mm m y u x The quotawnquot nmeal m can be convened m vmk asa mndmn m mums empevaluve mm 7 henhetempemuve The ma mm theyma enengJhe mghevnsquamv Hnwdn vnu maeaseme theyma emuen heatengmm adua hea e cv m a c amm Huwabnm vm ngmes7 THE CARNOT REFRIGERATOR AND HEAT PUMP um mmm M W Mmuihw M v m mu H y Nu vemgevalm can have 3 mm cop man a vevevsme vemgevamv upevaung beMeen me sammmpevame hmns AW vemgevalm m hea pump I um uuur m H um 1 Hm I MAE 321 Applied Thermodynamics Tumammg A 2mm m 1 mm b 15 y Yunus A Cagele MichzzlAJZu Th Fulhwing atsAn me an lnmtlur39s Sec nnuflhz Mcan HillWeh Sit m Hm Been Mudifzd m Th39s Cum Jawuafy 2 m s s 2mg Leaures Chapter 1 Introduction and Basic IMPORTANCE OF DIMENSIONS AND UNITS Anyphymx quanmy can be chavac enzed by ensinns The magmmdes assgmm We mmensmns s ave aIIed uml Metric Slsyslem Aswpxe and IngmaI sysmm based an a demmaI veIaImnshIp between me vanuus unns Engl39sh system H has nu appavem symmauc numencaI base and vanuus umIs mm sysmm ave veIaIed In each uthevva hev avbmaHIy w SVSTEMS AND CONTROL VOLUMES System Aquahmyevmaneymayegmh 7 space chusemuv may Surrnun ings Themassuvvegmn eumeeThesysTem Enundzly The yeaT m Tmagmavy sunaee ma sepavatesthe sy emhum n5 suheuhmh s The buundavy Ma sys em can he lrxeduv movable Sysmms may he eehweyee n he weed my Open swmm Nhl no Ms buundavy mn39mmm Open system Ennlrnlvnlumej Apmpehy seTemee yegmh 7 space HusuaHyendusesadewcetha mvu ves mass uw sueh as a eempyesseh meme m hezze amh mass and eheygy eah cvuss he buundavy e a eehuewemme Cnnlrnl surlzce The buundaHES e a eehheT vemme n can he yeaT unmagmavy An apeh syeeh a mum vu ume mh me We and me 2th PROPERTIES OF A SVSTEM Pmpeny Any chavactensu Ma sys em Same ammav pmpemes ave pvessuve PAEmpeva uve T vemme v and mass m Imensive pmpenies Thusethat YE depEndEM enhe mass Ma stem sueh asTempeyame pvessqu and ehsny Exlensive prnpe we These Whusevames dEpEnd Emma swzei m enehHanhe sysmm 5 quotE Fmpmm BMW CmevmnmdmevermateTmenswe pvupemes p21 um mass and Menswe pvapemes a s STATE AND EQUILIBRIUM Yhevmadvnamcs 623 W ewmbnum states Enulllhnum Astaiemha ance thanl equnmnum Mme Iempevmme sIhe same Imaugham We emwe Svslem mm 1 Wm Asvstem aHWu dmevem sIaIes at n new In HIhevexs rm change m Pvessuve at aw pmm unhesvsemw u e p seeq u n chem23 campasman m a sysem dues m mange Mme mm s W WNW mum mm A mused Wstem veachmg Ihema eemummm The State Postulate We numhev av Pvapemes yeewee m th2 sme m a SVSlem s Ewen bvme 511 Dn ullle e we sme a 51mph cumpressrbe sseem rs campefel speclpdby m mdepemene menst s eemmeem m magnehli Evavnmmnahmmmmand 5 C v 09 m lkg PROCESSES AND CVCLES anamev pm We Seuss m statesthmugh Wmch a Wstem Passes mmer a muses eeuMes I Ir m w W I W mm We mm mm mm M rmquot u Wm New Pmcess magvams waned w emmavmg themadvnamm pmpemes as caavdmates ave VEW useM m Pmcesses m m lsnchnncnrlsnmmbvmcesxA e V 5 m H mm WSW PmuessduvmgvmmmheSpeu c W 9 39 P vamme vvemams canstam mums cwe Apmcessdurmg v lmmthe mm and m smes ave menu23 A pmcess mmer M u The SteadyFlow Process Yhetevm seedmpues m change we we We mam m steadv s unseady m transient A was mm W a Danny B s engmeenng dew25 apevme ludyr nw Drones A Pmuess mmer Wmch a mud navvsthmugh a mum Wm e steadW aesdmaw mndn ndev seauyeuawmnumansm mass and enevgvcamems ma mm va ume u sam m vemgevatmn Svstems mm m Twu bumes veachmg TEMPERATURE AND THE ZERDTH LAW OF THERMDDYNAMICS mhev vaemacmg We mm may Wm amevmametemhe 12mm awcan he vestated as m Dames are m Mermaewmbmm 1 men have the same temperature ream even mm are m m mnfacf theyma ethbnum a su ated emusme nmme sca e ave measmee usm a cane me gasthevmnm ev Temperature Scales Amempevamve scabs ave based on 5 3 some easw vepmducm e mes such asme weezmg and bnmng pmms m exveumemu watev m rcepmmand me steam a abumed mm Wm m Icermlm Ammmenneeane Wale kume vas we emeeuumm Mhawsamvaleu Meme Mh vapnvaH aim P1655113 EI39C m usmvvam 3Z39F amevem vases Slmwnlm A mmuve m hqum watey 1 ammo and evva m m WWW equmbnum a 1 m mmr quot cesms scale m 5 mm svaem Fahrenhal scale w New um svaem h rm aw m Pvessuve 1 We Ihelmanl mc termemmle scale Atempevamve sca e ma 5 meepeneem the pmpemes m anv subaanue sum scal25RanhnescalEE Mempevamve sca e neavwmem ca m meKeMnsca ewsmemmlaas wquotme mm Mempmms Acansumva umevasmevmamelevwaum mad m 15 e anhsa ukzem pvessuve u u nmpanmn empevaluve sca es Cnmpansnn m m aemmees m venous tempevaluve unns a The vevevenee tempevaluve m me anma Kewm sca e Mame Ice pom 27315 K mm sme empevaluve a mm watev weezes my me mans The vevevenue mm was changed m a much we premsew vepmeumme anmhe trullepommwalev me me at mm 3 Wee Phasesm Wale m cuewa m equmbnum mm s ass gned me va ue 273 we K PRESSURE am am Pressure Anorma force exerted K we Hum perumt area In I r I39 W W Wmquot mun m E Wm AWN mm w m w H M an H M kw nu m M W nmnn a 2mm The nume suess m messuve nnme vee1 ma chube pevsnn e much meals man on me Vest m a sum newquot Ahsnlule pressure The amuai pressure in absuiuie vacuum que pressure The urwereree beiween rue absuiuie pressure and me measuved veiaiwe ucai aimusphen pressure M in read zeru m We aimu ure zcuum cahbvaied press v thaugham speemeu aihevwse rer us1 pvessuvermeasuvmg what and at a guerr pusmurr absuiuie n rs zeru pressure devices ave su they rrureare gage pressures Pvessuves beiuwaimusphenc pressure Variation of Pressure with Depth messes mp mm as a wrm eievaimn rs knuwn ru rm M 1201 m added v eigm 44 ruru eiemeni m eeurrprurr a gasrihe Pvessuve p a new at vest messes mmessuevwih heighhsneghgihie m a mum Wed mp vanaimn Me pressure rsrpe same at an Paints an is purrmu pane in a given up esruress m ryr prwrueu that the Paints ave me anneded W S u the same ruru A Pascal39s law The pressure apphed m a eehhheenme maveasesthe pressure thvuughum bythe same amuum The ayea vatm AjA 5 caHed We Ideal mechanical advahzage enhe hydrauhc m meg Ma 3132 We gm by a smaH mee bythe appheaheh e1 Paseavs aw n 5 cummun y usedm measme smaH aha mudevate pressure eweyehees Amanumetev m mm s devme W a dmererma heheheeh 7 I mm 7 h 7 mu 7 hu 7 ya I 7 l w mm Yhehasm h heheheeh 7 Mn 1 th 7 Nu m eeeheeup mm avevs the Pressure ehenee amass a me BVEY m dens v pane he gm h e py l39hm w other Pressure Measurement Devices Enumnnluhe Cansxssmaha mwmeta mhe hem hkea hank Wnase ehehsemseeehe h e dmamahndmmmneed e Plsmre tnnsducels Use vavmustechmquesm eehvemhe Pressure enema ah e ecmm e ed such as a mange h vauage hesmehee m capacnance eyese emseueeys whey and me and Veaheehy ehshveehaheahepeese T hahhehheehaheh m We K sqeepeeeee WW w heme a maphyaeh eehee eemeh m ehaheeys when m he in we We pm We heme u h hephheehe VavmusWPEsm auvdanmhesused 27 a measure pressure m W h THE BAROMETER AND ATMOSPHERIC PRESSURE hem pressure s a en myde Esme Dammat c Dru mm m Awequem vused pvessuveumhsthe standardafmusphere Wmcmsde nedas 13595 km my mum gvawmmna ame evmmn g 9 am M We engtn anhe quot capraW enacts Yhe hasu hammetev 22 End of Chapter 1 Chapter 2 Energy Energy Transfer and General Energy Analysis FORMS OF ENERGV Energy can exrs1 m nurneruusmrrns suen as hevma mechamca kmeucpu erma 2 2mcmagneuc enemrearang nuearangrnerr sum eensmuresrne Intzl energy Euva sysrem Tnerrnugynarnres gears un ywnh the change uHhetma energy Macrnscnp lnrms n energy Tnese a sys1ern pussesses as a Whu e Wun vespecHu serne eursrge reverence rarne such as kmeuc ang putarma energres Mierns npiclnrm energy Tnese mated m We mu ecu av s1mcuve er a sys1ern angrne gegree enne mu ecu av amwny Internal enEruy U Tne sum UVache rnrernseenremrrns Mermng Kin ie energy KE Tne energy War a sysrern pussesses as a vesuh mus rneuen ve awe m serne reverence rarne ergy PE Tne ener War a sysrern pussesses as a re un E s uhtse evauun ma gvavmatmna mm managswwwmm he d 2 2vauun 5 KI e M Mr mneucenergy n s r rm mnaucenergy r N H V perunurnass w nn H M Pmenuar energy r r gum M s I M H Pmenuar energy 1 perunurnass Enereynnwrare rr mm AW mar energy I M II I mummy A H HEnemeasvSlem A H perunurnass rmarenerev B perunurnass Mechanical Energy Mechanical energy Themvm ulenevgythat can be eenyenegm rneenanrear Wuvk cump ete y ang gneeuynyan dea rneenanrear geyree such as an rgeauurnrne V Memarncar energvma nwng umpevunn mass vu m Lg u n quotn u I W n 1 Rare m memanrcar enemv mange m a num gunng rncnrnpressrnre aw r NERGV TRANSFER BV HEAT Heat The mm Menevgy hat s n Mu ysnsmyeu betwee s 5127M m a sys em and Ms quot52w sunuundmgs byvmue we 7 T M m Mm luv quot1min x In u M as u Wm v M Yempevmuve dmerence sthe demg neigv can cmssme mundane ma mused Wstem nthe mm mm and vka smpevsm dmevence the h ghev sthe mg m heat tvansvev H Heathansvev 7 P21 m mass m1 MM a mmsnss i A H Wnen heamansvevvate L L s cansam mm mm vans ev L J 0 m My Wnen heat tvansvev vats changes W m unw m 4 HAvaMmr WWW w sh j Duvmg an mum Pvacess a svSlem emhanges rm heat Wm ns sumundmgs n ENERGV TRANSFER BV WORK Wnrk ms ance I m I m Fnrmzl Sign cnnvev m Hes Hanger 0 a wequot and work done a a syszem are pasmve hes quotanger mm a syszem and work done on a yszem are neganve ndma e mumquot Y Wamane w W pemnnmsss Pav ensh w n n vka dune pev Sineng We dwedmns m e umHWHKW mm ande an Heat vs Work r39I w u x I h ave vecugmzed anhe buundanes 39 E Ma sys em asmycmssm buundanes That 5 mm hea and Wuvk ave boundaryp enumena Sysmms pussess enevgy but nm ma 1 ukuvk 1 Bum ave assumamd W a process nm a sum 1 Unth pmpeme heat ukuvk has nu meamn a a 5m 7 Bum ave pamundronsU 2 Men mm m u magmmdes depend an m path Pmpemesave pmmmnmnns hm uHuwed dunng a p s asweH mm m and wow avepalh mndmns and sums maumagnnuuesuepem nnme Path Mower Pmpemes ave pmm mnclmns haveexaddmevemwa s i 39 Palhmnclmns W V v Av havemexad 6H m mum dMeverma sU Electrical Work A 39 E emnca puwev n u When pmerma dMevence and cunem changewnh Mme KL VIII U RaunemLanupmennammyencev Whenpmenua d evence and cunem yemam cumam n l m my MECHANICAL FORMS OF WORK Them amth vequwememsluv awuvk mmammn bemeen a sysmm and Ms sunuundmgsm em 7 mm mus1 be a Iorce admg mm buundavy 7 me buundavymust mm m vmk dune s Pmpnmnna m m We apphe a andme mam mm s 33 Wenvansmmed thvaugh Me shan Me shan v mk dune P21 m We Shaft ma ork 5 Spring i Work Hangman MW e m H mm maspnng undevthe v39quot rmuenuem Emma NmeIAMAW l 51 Q KWNM VMVNANV THE FIRST LAW OF THERMODVNAMICS The limbwonher 39 39 Me vanuusmvms menevgyand enevgy mevactmns dminqa process it can only change lo 5 The FirsILaw Fm aH amabauc pvucesses bemeen Mu specmed emee e ne wuvk dune ewe same vegavd ess uHhe ys12m and Me dae s ume mucess Me mease m Me ervEVgV m a mam m an aven e 2mm m me oh ammml m hea vansvenedm a my Energy Balance Me Net change Muease or decrease M Me zozaene dunng a process rs same 0 Me w erence bemeen e g and Me Iotaenergy eavmg Me sstem u r y 0 Me 95197quot 1 e Iotaenergy 1 Mg Mazpmeess enh39 ll liil 3m k i Zum 39 i 1JL gt H l H 7 l ALP u svstem and As suvmundwgs Anubmu Me v mk mumw dune an an amahmmsv em eequauaMe mcvease mMe enevgv Mme Svstem Energy Change of a System AEsyS m huem may L12 m rum mur 7 tung 7 r 7 3 AH w Al f e r U memaL kmeu and putarma enevgychanges Slulionm39y 3y em 7 Al l 0 v 7 aAKFr 39 All AL mm 7 w mu m m 415 7 m gt 37 Mechanisms ofEnergy Transfer Em and Em Heamamev H HA H Kr Wuvktvans v 7 Massnuw H mm H W 1 W A H w m 7m m H Hnr unhw In Fm acvde AEU thus a w ene cuntsmma mm vnmme can be changed sun shealarm 7 mu kamtevamnns ENERGV CONVERSION EFFICIENCIES M m mdmams huwwe an enevgycunvevsmn emansvey pvucess s accumphshed M KHmuhHu 7 i Rulmm nwm 9 Wmquot MHemdmuw We quot 39 m u mmmmm Healing value nllheluel The amuum a heat ve eased when e um cumbustmn pmdums ave cun edmme mum empevatuve Lewerhe gvzlue 1mm Whenmewa ev eavesasava m Higher hem gvzlue 1mm Whenme Wa EY mme cumbustmn gases 5 cump ete y eeneensee and thusme heat ewapenzanen s a su vecuveved Overaf emcech n mu olapowerpam Efficiencies of Mechanical and Electrical Devices Mechahlcal ellcleho e e lhe me a mechahlca Flintelf e venessnllhemnvelslnn ch hlca l IuenEy aha Iurhlne emu ml lwmk suppllee m exlladed aha lhe enelQV nllhe Mm ls exmessee lzvlhe cyl Pincess belweerl en 5 3 in he mechamml pawlhpm w Mlm l H h llll hm ll hm hlh l vllm vllllhhnlulnll ll vs ll m I ll P um P ellclehcv Genelalnl H l emclehcv P um I39M mm ll nvevall emclehcv T umlhecehemm n Al Vevall emclency lhe nvevall ellcehcv ma lullalhegehelalm lslhe pmdud ellclehcv nllhelumlhe aha lhe emceth unhe Qenelalnll ahmem ehlslhehacllnhnnhe mechahlcal ehevgv nllhe llum convened in eleclhc ehevgv ENERGV AND ENVIRONMENT The EDHVElSan ul ehelgylmm uheluhh in ahulhel ulleh alleclslhe Envllunmenl andlhe allWE b Enelgy ls hm cumplele Wllhu Pullulanls emllled dullng lhe smn acid r n aha Inhal lealhe lh manyways aha lhuslhe sludyul m E nsldelmg lls lmpacl Em lhe ehwuhmehl cumhuslluh uHussll luels ale lespuhslhle luv warmin The ehwmhmehlal pullulluh has leached such hlgh levelslhai ll became a n selluus lhleal in vegel E hemv accnm P lwim me aha human health l9 3 ET39 x0 cu Hc I Mmm vehlcles ale lhe lavgea snulce m all pullmlnh Cnnvelsnquot Plucesses ale nlleh ahlee bv ehwnhmehlal pullmlnh Oznnewmateseves 93th p p 9 he 033mm n aTsa Eavhan hahaage co PamMate ma ev sggh as sum one Sung Mage up hash mgmundebve am Bantams hgheyags mhev chemma s Thngghg ahg gush vmame avgamg gampaghgs vocs sum as pehzeheT pmahe ahg mhev hwmcavhans davsm mm gmundJeve azane ahg g h p 554 mh m h mm The mhev sermus paumam Th shag Ts umnn mmme hthh s a gaTahess adm ess pmsahags gas u s ha w emueg bv hmay vemc es u depvwesme hadv s avgahs hah genhg ehaggh axvgeh hv phgmg wtmhe Ted pTaag ceHsmaI hpng a hevwse T ga Waxvgen HTSMB at thh TeveTs sgspehgeg PamMate ma ev sggh as dust ahg mm ave emueg by vemc es ahg hggsmaT Vsm mes sgeh pamgTes T wmmethee essnd he un s ayaghg Texdamn whehame phhawaahpahehamh av 53 whszhehapawshhhaaaamaeahahhhaw T a Acld Ram The squ mhe meT veactswnh uxygenm 1ng sum gmhge 80 whmh Ts ah ah puHmam e mah suuvce gvso Ts he eTeame puwev p amsma bum thhesgwm egaT The sumv axges ahg hnhg axmes react Mh amaspheye mhe Pvesence msunhgmm vgyh sghghg ahg huhg sums mamas Th gaggs m vgg mhev ghehTstthh h We mmaspheve mhe Presence m smth M The Greenhouse Greenhause 2112a GTass aHqu he ngay yagTahgh a ememeeTy hm b ucksthe MYaYEd Effect Global m5 Warm g causesaH52m hem enunempevamveasa vesuh gnhe hehhaT Enavgy huhggp m a space T e 53 The sghaee gnhe eanh Whmh WaYmS up duvmg ha gay as a vesuh gnhe absuvmmn u may h m Ms eheygy mm geep space as hhayeg h m pan a V yagTaha Carhan giaxige1coalwa ewapgh ahg quotace amuums gvsgme mhev gases such as methane ahg hmggeh DXMES am We a b anke H 1 We heahama edlmmthe eanh The vesuh Ts T glahalwarming These gases ave eaueg greenhnmegases W 00 hemg the pnmavy egmpghem HussTTmeTs The gveermause even an eanh 39 002 s PVUHUEN WW WWW D h I 1 4 an I End of Chapter 2 Chapter 3 Properties of Pure Substances PURE SUBSTANCE Pure substance Asubstance tnat nas a mu ansmtcat cumpusnmn thvuughuut substance V mm M39Uu n Mk t lul m t Mum up w m Ammuve uthqmd and gaseuus Water ts a pm substance but a mmuve uthqmd and gaseuus an ts nut Nnvugen and gaseuus aw are puts substances PHASECHANGE PROCESSES 0F PURE Cnmprvssed liquid isuhennied iiquidi Asdbsianseinai ii is not aim in vaporize Saturated iiquid A iiqdid inai is abouno vaporize AH aim and2n ci s1n Wa EVEXiS SmMe quid pnase ompressed liquid AH aim piessdie andiumc waiei v apDHZE saturatedliquid Saiuraied liquidrvzpnr mixiure Tne siaie aiwnisn ine iiqdid and vapmpnaaescoexazin eqdiiibiidm Saiuraied vzpnr Avapunhai is aim in condense superheated vzpnr A vapuv inai is not aim in condense i e Jim a saidiaied vapuv THY 39 K H i IH i l39 i din iiiii r Mmmehea stvansmned AM we M i pan Mme gamma MW ien re ienains tvansvened the V W msggwadmm wrist m u c dniiiine ienpeiaidied e a MM iasdiapdiiiqdidisvapdnzed vapdisansi n aimed vapor upemend quotmy iiine eniiie piasess beiween siaiei and 5 desciibed inine nqdie is YEVEVSEd bycuuhng ine waieiwniie mainiaininq ine piessdie ai ne same vame ihe waieiWiii qa backiu siaie i i ieiiasinqine same pain and in SD duing ihe amuum aineai ieieased Wiii exadiy maisnine amuum aineai added ddiinqine neaiinq piasess Ivdiaqiamiaiine neaiinq piasess ai waiei ai sansiani pYESSUYE Saturation Temperature and Satura n Pressure Thetempeva uveatwhmhWatev ansbmhngdependsunme pyessme thevemve Hhe pvessuve SV XEd su Tsthe bmhng temperamve Watev hst at mm at 1 am pvessuve Salur n empemlure rquot The empevamve atwhmh a puve suhs1ahee changes phase at a gwen pvessuve Salumlinn pressure P The pvessuve atwhmh a puve su T YE hs1ahee changes phase at a gheh tempera u T he hqmd vapm a satuvahan u T ewe m a Lanem heat The amuum u enevgyabsuvbed uneTeasee euhhg a phaseehahge pmcess h Ts eewaTehnu We amuum eveheygy yeTeasee euhhg heezmg Lanem hem nlvz nnzzllnn The amuum eveheygy ahsmhee euhhg vapuuza mn and n s eewaTehnu We enevgy yeTeasee euhhg euheehsahuh The magmmdes unhe atem heats WM Tn m eepehe Em We temperamve m w I hnha v pvessuve atwmch the phase change W39Lg glhimlhie g uccms AH armpvessuveme a emhea u p ThTh usmh DVWaevT53337 KJkg ahmhe atem heat uNapuHZa mn Tszzse 5 kJkg The amusphehe pvessuve and thus 2 my the bmhngtempevatuve awareh Ngm eeeveaseswnh eTevanuh Some Consequences of wva Tsal and PS Dependence U Th ah T u the Pevmm r mmmsand veg ah esvwl T T m We me me vacuumcamhe hah 2539c a we h m4 vamve meme 39quot hma ehe aseamhe eansamm Asscane was We W thusmmawmamsthetest mummy M chambevatrw 39c heawspace hahsm u q k PROPERTV DIAGRAMS FOR PHASE CHANGE PROCESSES The Va atmns elf prupemes du ng phaserchange preeesses are best summed and understand thh the he p elf pruperty magrams sueh as the m Prv a d PVT magrams fur pure substance mmaevem v mnslamrpvessme pheseehehee Pmcesses ma Pave sAhSIance m vanaus Pvessuves huhehmw vs ues ave my vvalev 55 e varan e cnmpnrssedliquld eginn superheated vzpnr reginn 2n diva nr mmaemh m a Fave sAhSIance m rhe Pmn e1 Wmcmhe amen p h g andsmuvmed as aquot 3 setesevememee bamng Pmcess heme vspm P 1 MP4 7 150 C Hum Prvdwagvam Ma puve sub ance The pvessuve m a p unrcyhndw veducmg mewewgm enhe WSWquot 57 Extending the Diagrams to Include the Solid Phase m mmepmm Pressue a and iempevmuve a smsiance exists m twee es m ethhvmm Fkvdiagvam avasuhsianceihat H H mmmasanweenng 7 Fkvmagvam m mmmmm expandsanvveezmgsmhasvuelev 5 Suhlimalinn Passmg mm Phase Diagram me suhd phase mm mm W ihevapuvphase l H Aiiuwpvessuvesbeiuw iheivipierpumivaiue Periagvam nipuve subsiances suhds evapuvaie wuhum memng m1 subwarren u mg 5 b q magma such Esme mm mmagyams mm caniricisan weenng expands an weenng We vvalev m PROPERTY TABLES Fm mus1 submneeme yexanunsmps amung thevmudynamm pmpemes ave mu cump emu be Expvessed byswmp e equauuns Thevemve pmpemes ave equen ypvesemed mme mm nuames m m y cannm and ave ca cu a ed by usmg me ve atmns bemeenmem and measmame pmpemes tab es m a cunvemen uvmat Em anqu Cnmhinzlinn Prnpe y l H e v w H I gt N Yhepmdu pressurex m h n Saturated Liquid and Saturated Vapor States Table A 4 Saturatmn prupemes ufvvater under temperature 7 39 I Hunuevwe me a WWWM mm mm M m WNW 7 Wu nhuurm mmmmlm nx n mum hezlnlvzp nnj Theamuumu enevgy neededm vapunze e um mass u samva ed hqmd at a gwen mmpevam m pvessuve Examples Satuva ed new and samva ed vapuv 51am uv Watev un Mane Prvmagvams S aturahed quality x no I at u d Vapor M xture mononm gt n smuqum1 sonaror Theprwemes ome samazeommoare Me same whemerrzexms abne mm a mmwe mm samazeo vapm we o m MH k worm mo m x ml o males of WWW A vmrphase svslem an oe mm W quoteaten as a homogeneous thequam39yx mmuvemvcnnvemence o o s gt o nu we m m n 39h Mn rr uoamwsvemeu mmehnnmma neeson r ms1a P v and Iv magvams The wame ma saluvaled hqumr mum mmuve hes betweemhe wand vv es a o Tm v Examples Saturated qudrvapur mmure States an Trv and PW magrams Ix rm Home m kx n n o Hr oo o 7 superheated Vapor Mme vegmn m the hem nnhe Cumpaved m satuva ed uepun enzed by supevhea ed vapuv s chava rummnmwp h lhylwrlun mnmlue m epmur ulwm u u MM unun u M e huhwh h uurw 1mm Maspecmed h Rsmevhee eu vapnv ehs1s at am he hen setumeu vapnv APama hamgm reme A43 The mmpvessed mum pmpemes Compressed quuid e uepenu nmempevatuve much mm h even an res amngm en h 2 SHE yw u nvh A move accuvale ve ahnn m n h r Mew W Atagwenf39mu A cummeeseu mum enu I a me mavbeanpmwmaleu 5mmquot W e set valedhqumal manage the gwemempevamve mm W r r eference State and Reference Values The va ues m u n enu mnnm be measuved unecuh enu thev ave ca cma ed hum meesneme pmpemesusngmeve a mnsbelweenpm emes hnweuen Muse ve almns we the engeeh pmpemes nnnhe muss m nmpemes a specneu Theveinve We neeum cheese e cunvemem reverence ezeze enu asswgn e va ue m 19mm e cunvemem pvnpenvm pmpemes anhal s1e1e The ve39evanue s1e1e my watev s n mc enu vm R4363 s son39c m ewes 57 pmpemes mav heve neeehve va ues es e vesuH nnhe yeveyence 513 s c nsen Schemes umeyennemes hs1 dmevem va ues m we pmpemes enhe same s1e1e es e vesun m ushe e dmevem ve39evenue s1e1e n vmn vnamms M ave cnnc men n the evneu M e nevevence aale chosen 5 m no consequence h cemehnns THE IDEALGAS EQUATION OF STATE Equz Inn gvsmg Any sgganun tha ve a esme pvessuve smpsyams ang specmcvumme Ma subs ance gas phase sthe gsaxgas sgganun u151a2 Tm sgganun pvedu sthe Prvaehavmv Ma gas qmte accuvamywnhm sums pmpsny se ected r 7 V dezlgas quminn 39 quotJ V R nlslzle w J y m mm Suntan um I i gasmns1am M mn avmasHKgKmn mm R umveva gas cgns1am mm man ng quot1quot mm m Dmevem sgasams have dmevem Speu cmasmn ams 7n MassMnavmasstnenumbev w v r v ggaugasgguaunnaum m m a 7 gt smasmramggms v 7 HIV I V mm me JIMN Iv Vanuus W W expvessmns uhdea gas g ummn Me gawga man n emsnm ems ev appucab e nvea gnn mn e ave gases mus cave genmeg W a smug seg mm 7 COMPRESSIBILITV FACTOR A MEASURE 0F DEVIATION FROM IDEAL The39anhevawav Zws39mm um the meme gas gewams quotum geawgas behavmv y 9 law Pressure my zemperame ougsmn Wha sme cmena vgv nWmessuve ang Nah empevamm nswer The messuve unempevame m a gas 5 Nah m nwve alwem Ms cvmca tempevaluve m messuve m u ml u s I ms I lt x v m vevv gwmessmes aH gases anpvgam The mmmessmmwadm s meakgas behavmv vegavr ess mm mm by mea gases tempevaluve Cnmpansnn m ztaama my venous eases an H m w a Knnwe ge m F and v5 e atetmm me a ehavmvthe mns1 mme ne ghbnmnnd nnhecvmca pmm 73 OTHER EQUATIONS OF STATE Seveva equanena have be H pmpnsedtn vemesen he Awaehawm msub anues aeematew me a may vegmn m rm wmtalmns an derWaals Equation of State quotw m m A h amm Tms mnde mdudestwn awed m the meatgas mnde the rmermnlecuar amamm cesanr he val CWE smhevm pm at am mnsmeved a we wumedDMe mulecules memama The accuvacv mme m devWaa s equanen amate 5 onequot madequale aate EeattieEridgem an Equation R quot J wm EenedictWehhRuhin Equat u t r w y The cnn ams ave wen m rame 3 4 at densmesumnabnm 25 ac N mm m Virial Equation of State mm a 1 The enemuems am W cm arm m nn thal ave mndmns unempevaluve amne are caHed wawemcema 5 of State 7 The cnn amsavegwenm rame Htewaneua densmes up to about n m ion of State End of Chapter 3 Chapter4 Energy Analysis ofCIosed Systems MOVING BOUNDARV WORK p mm Q lrenulllhnum pm v lmcmhesvsem anmg hnundnrywmk 4v ndcampvessmnv mvk Apmcessdurmg w m eqummm m au n i Ah I AAIV 1I H W m m WWW A gas dues a dmeverma amaum m mm l was n We We mslan a wave v a dmeverma amaum ds m mm m an s mam mesmm mm W m m W m msmsm M 1m mama vmk dune nnme svstem Polytropic Isothermal and lsoharic Processes y x Panmcpmcess C 01anchexpnnemnnnaams v 7 1w 7 1m Panpm u v 39 quot Wucess u Jw s m Panmc and my mea gas L M Whenn1 1 H I Ivsnmsmss mm j m H gt I WW I I WV W V Wonns1ammessneasnuam Pmcess What sme buundavv Walk my a mns1am me nessn ENERGV BALANCE FOR CLOSED SVSTEMS L L M Enevgvba ancemvanvsv em undeman anv mncess nu E nevgv bewance m me vale vmm The ma quammes ave ve a er n we quammes um um me 5 L M u m m u m u u w Enevgvba ancepev um mass bass Eneng be anue m H rmeverma vmm Enemvba ance m u s r u MaoC s Enemv be ance men 5mquot cunvemmn 5 used a e a heat mum and wok empm ave pesmve heal mum and wow mum ave negalwe A 39 Venous myms the rsHaWVe atmn vm dosed svs1ems Men sen cunvemmn s usee The ma awcarmm be pmven mathemaumw am rm meeess m name 5 Knnvm m have women the ms 3 am Ims shnum be aken as amen mum FmacvdeAE UJhusD w Energy Balance for a ConstantPressure Ex ans n Va cun antpveasuve expanswun undevgumg a quaswrethbnum eumpyessmn pmcess cun antrpvessuvepmcess Qwszo 5y sO AU WA AH A 39h V u a swan L u M r wquot w39 m 7 mm In 0 n u y M Wu when 7 u Harwvndm u n h IL 7 u SPECIFIC HEATS me empevatuve uHhe um mass Ma subaanee by me degvee as me vu ume smamtamed cuns1am me empevatuve uHhe um mass Ma subaanee by me degvee as me pvessuve s mam amed cuns am nmu u n m a speeme heal sme eneng Wessne specmc requwer n vaseme W s team 0 tempevaluve ma unn mass vamss ave 39nv masuuaanee a one he um ga eegvee m a meemee vvav mm The equat Inns h Ihehguve ave vahd m ahysuhs1ahee undEvgumg anypmcess CV37 9 vepvupemes CVWS ve atedmthe changes m WIQMEenergyand 94 the changes quotquot15ka c m KJkg K Are 39 lenliczl m AIR I quot A H H 7 Ivan mHHuvauhru me Im K We M x m vrhha I u heth 7 Fuvma de nmunsmc ahec mlw HM u rheweemeheamamsahee 4 Ml changes Mh Iempevaluve True nr Fake 0 samaysgveamvthan c I m mm mm INTERNAL ENERGV ENTHALPV AND SPECIFIC HEATS 0F IDEAL GASES I W I n h m m RT W I um h MI h 7 My m a mm H h I e mm m MW Ah I Mum ush INS h expeumema mevna ehehev and a yams at Inmwgzses emhawvchangem u tman c 7 W W e ah Mea gas Iempevaluvenn v x AI mwmessmes aH rea gases appveaeh u and h data m a numbev m meahgas behavmv ahmhevemve Wequot gases have beemabmaIed specmchealsdependuntempevaluvenn v IheseIamesaveemahee TheSpeu chealsnneaIgasesa nw h a me s ave eauee rdeakgas specie hears m zewrpresswe wecmc hears ahe ave nIIen eehmee tmarm cm a the he vevevehee s1a1e H mm hurt mu m I m Am F a pm and peummh Wegva nns wueanhg s1aIe1 asI 1V wzl h s M h gasesltsee mhemepavanehmmeahgas rame A720 Iab es n K 5 eheseh asthe h mch veievenceIempevaIuve quot quotquote quot equahehs 7 mema enevgyand emha pychange when spem hea staken sumam at an wam age va ue mm H u Ms I h sh s 7 MW 1 r Fm smaH empevalure mews me specmc heals mav be assumed m av hneav vmmempevaluve TheealmnAucVAT svahmmanykmdm pmcess mquot a 7 mm mm as Tms Ways av ca cu a mg Au andAh Eyusmg We tabu ated u and n data Ms sthe easwes1 and must vevy cunvememwhen pmpeny abesavenmava abe Thevesuhs Th ubtam a ave reasnnzhly zccurm 3999 WW5 m 3 quot9 A thetempevatuve mterva s nuwevy avge Speci c Heat Relations of Ideal Gases The ve ahnnshmbelween 0 gym R a v N m k n s u v m m r Ihll WWW 3quot WW Onammavbasws a w w Mimii k I sump healvalm 7mm s m spasms who was m mmpevaluvt bunms vanahnn s vevvmud WWM x nvmnnatnmmgasesmwum K n ammusamesessemaw cunaama m Manvmammm gases mdudmg am have a sneak heat yam mam Ma ve W r The 0an an mea gas can be delevmmed quotam a Knnwe ge m and R Unnm tempevalu INTERNAL ENERGV ENTHALPV AND SPECIFIC HEATS 0F SOLIDS AND LIQUIDS Incnmpressihlesuhslznce Asub ancewhuse specihcvuiume uvdensny iscun ani Suhdsandhqmdsavemcumpvessibie substances LIQUID v rnmmnl IRON r HA SOLII Md 7 J The gym cpvaiuesni mmmmessme smaances ave idemmai and ave denmed w c Internal Energy Changes for Liquids and Solids I u w iIH A AH 11 u 4lirll ill kw M7 H mm Enthalpy changes far Liquids and Salids A r u r Pv 1 7 4 7 m 7 mm 7 7 mI AlyAy 7 Hm AI M m w m m Wm mm mm A in Hwy Ah1 u WNW W up n in w u r I Ween ha wn39a cummessed mum Amnveaccuvaleveiahnnihan h h End of Chapter 4 31 Chapter 5 Mass and Energy Analysis of Control Volumes CONSERVATION 0F MASS W h m and H name he cvea ed m deshuyed why a pmcess Closedsyslems The mass unhe sys12m VEmam Euns am uuhhg a pmcess Conlmlvolumes Mass eah vussme buundaHES aha suwe mus1 ke ephack unhe amuum uhnass EMEYmg aha eahhg the cumm VD Mug 2 kg m kg Ix kg H o H10 M ass 5 cunsewed even uuhhg ehemmax veactmns Mass m and enevgv Ecan be eehvenee e eaeh mhev aemmhe e I NHquot where msthe speee mhehnha vacuum mmms 02 99m mm the mass change We e ehevev change 5 absu me v neghgm e Mass and Volume Flow Rates H Dehhmuh u avevage vemmty Vu ume uwvate A mm W we ru IN e New rhe Vu ume nwva e mhe eehhee asthe avevage speed Vu ume mum hnwng mmuqh a my acmsssedmn cmsssedmn peyuhnhme The avevage whom we 32 Conservation of Mass Principle iamwam a swim vuhmie dumgaiime imevvsi Anseeueimnenei mange incvease m decvease inine Mai mass winnine comm vuhmie dining A s i i 1 41 33 1Iii iiili L gt Mi n i ii l X i i nlln in A ni m i i i i ii Genevai cansevvsiian mmass m N iwimii n Cansevvsiian m mass pnneipie im an avdinaw bathtub W Mass Balance for SteadyFlow Processes eeanseni m s We e lt w Fm sesewiawpmeessesi we ave imevesied inine amount ainess navvirig nei unnii EA aiisiihemassmwraie 39 e v H i Mumpieinieis i andexiis Sin ie ni in e Ni ii ir Su sm dmusevs imhines mmpvessms and Pumps invaive a sngie siveam Univ one inieieneaneamiei Cansevvsiianaimasspvinupiemvaivw iniemneamiei seadwiawsysem vx le Flow Spe I Case lncompres Tne cunservaiiun uiinsss ieisiiuns can be simpMied even unnei wnen ihe uid is incumpiessibieiwhich is ususiiyine case en hquids Siesti incam Pvessihie Siesti i i incampvessihie iti sngie sneen ineie is no suen nine as a ieanseweiian m vaiume PvinciPie naweven im steadv iiawm imuidsiihe vaiume aw vaiesi as weii esine mass anaiESi remain substances Dining 3 seewiiawpmeessi vaiume nawieies are nm neeessenw mnsevved ennaugn n ass aw mies ave 33 RK AND TH e y Th y 2 mass mm my cunt uHhe mum vu ume T swuvksnecessavymvmamammg 3 mm cummuuus uwthmugh a mum vu ume m u H r w r w U M V39 up m e Mme absence n39ame emmn the inme Wm apphed on a me by 3 mmquot e wua m the s hemanc vm unwva was when on We pman bvme MW Total Energy of a Flowing Fluld lH kd pr39H 1 e I The unwenevgws amnm aneauv taken by emapr m r cavem H I39U rl Hikuwphuw mvaam mam veasen rm de nmgme n r r u 5 w pvnpenvemha pv 9 2 r e 2 Nan m39u a uVTgz 353 9PvuVTgz M Memta enevgv mnswas enmee pans m a nnn nwng mm and Van pans rem nwmg um u hp grv Energy Transport by Mass y M 7 M x W W Mn Whenme kmeuc and pmerma enevmes y V m a mu aream are neghgm e Agx km um r ml m u midkg r 4 rkWJ Whenmepmpemesnnhemassal each Wet or em change WW ume WeHasnveHheansssemnn u r H m The 1 m smeenevgy pvudu Uanspuned mm mm vu ume by mass per um ume 34 ENERGV ANALVSIS 0F STEADVFLOW SVSTEMS Under slea vrllnwmndnmns lhe mass and enevngmems ma cumml volume vemam consent Manv engineering w ems such 397 aspnmwlamsnpevaleundev V aeadvcnndnmns m Cll lml Undevsleadvrllnwmndnmns willuw c angemhllme n Mass and Energy Balances 3 a l for a Steadyflow Process M in 3 My u m m Mass m Lani l balance Energy Balance Energy Balance Relations with Sign Conventions e Heat Input and Work Output are Po e 39 J gt v l U My my H U quotrm y r a A w 0quot nw J V W i M H r h 7m r r W H mquot Wm mm and potential enevgv Nquot changes ave negligible W 35 SOME STEADVFLOW ENGINEERING DEVICES ung penuds Dunne Tne cumpunems an a swarm puwev mam wanes cumpvessuvs heat exchangevs and pumps 1uvexampe upevate nuns1up an mumns bemve We system 5 snm duWMm mammnance Thevemve mesa dewces can be cunvemen y ana yzed as sIeadyr uW dew e mm A M e A modem Wandrbase gasmvbme used vm e educ pnmv v9 m pmdudmn TmswsaGeneva E edncLM muvbme I sgmncammngesm hasaenmhm 2m nm ghs mns an pmduces hemnmenemmm 552 MW at SEED mm Mn seam mleclmn W NOIIIQS a d Diffusers Names and mmsevs ave mmmnmv gt a as 5 me many Ma Wat We expense m messuve A musens a dewcemal nueaaea Memesswe Ma myde game m en awn 747 Thecmsssemnna ave Ian 2 e deaeases m We neweneamn vm smmnm news and neneases my 7 hum 7 A supevsnmc news rne vevevse sIme Inmmusevs r Eneng ba ance my changes M Mr ve nuues and mus Turbines and anae vmales andmemvbnepmdumswrx cumvessms as wen as rurms and vans are names see In naease We Pvessuve ma mm ank s suppheme these devmes m an enema mums mmughavmalm snan A m mueasesme messuve m a gas shgmw and s manw used In mnbmze a gas Eneng be ance renne cnmpvesmv n Ims name A compn ans eapame m mmmessng We gasm vevv mgh mess es I I Pumps We vevv much We mmmessnvs n nn 0 nn emep ha hevhanr ehqumsm eadm hmu AAc r HJ gases mx 36 Throttling mman valves ave any we Mawsiesan dewws Valves that muse a summm messuve amp mme mm H van d N h The messuve amp m the mm s n en accompamed W a largedmpmemperame anwnnhalveammmm mg eeweesayeeemmemvusem at n remgevaunn and awe 39 candnmnmgapphc ms Eneng h s 1 mummme 339 u A m u 71gt V 7 mlrnmhunm no mvclu 7 anam u mm m mew 7 m 3m an The tempevaluve man mea gas dues r h m nm change dunng a Wm hng e neensampvneesssmee nn eamn ev mu Mlxlng Chambers m engmeevmg apphca wunthe seam Wham me mmng pvucess s 1 takes mace s cummun yVEVEHEd m 1 WW 2 j w my a 3 y MEIKPa y m l s we Enevgvba anue vmme amaaane mmng chambev m u he guvews The Te bnwm an nmmavvshnvm sevves asme mmng chambev vmme h anmhe cnmrwalevsveams Heat Exchanger L i devwcesmeve wmnv ng H m H mm aveams exchange heal Wanaeyssewamea We cnmem venous a h ma W has mama may be a Manama an hnwme comm vmume s se eded Mass and eneyav um ba ancesbnheamabauc heat exchange We a ewes Ahe mhang 1 can be as smme as m mneenmc mpes 37 Pipe and Duct Flow I H l was and ducts 5 Emma mpunance m many engmeenngapphcanuns Haw mum Mumc H HM CD me m and nwmav mvmve mmeman one mm m va aHhe same me My u Enevgvba anue mmempeunw shnwvmthe Name s N swgm cam A NERGVANALVSIS 0F 7 mm ADVFLOW PROCESSES ManvP Chammg ma ugm tank quotam a smmv hne s an unman Ce 5 smmlevest maven mvnwe changes Mmquot me mmmx vnmme wthume Such pmcesses ave caHed unszemrm m quotammw quotmaxim pmmsses anthe mmvm m umwwymses u be yemsem mman M We WW Wm ummmmnw nmcm The mm 0 Wan mm mm m m 5 r and swze ma comm n q meme n mm W umemav W Y A ve avevaged an mange neateuasmmammvme mum em ve pmcess Mass Ea ance r m NM 7 mquot I 7 quotWm M mum Enevgy I 391 ba ance H 21ou H imw W n h Ac39yw u m m The enevgv equannn ma ummvmr nwsv em veducesmmal m 3 doses svslem men aume W915 and ems ave dosed 38 End of Chapter 5 39 MAE 321 Applied Thermodynamics Thermudgnzmics An Engineering Aggmzch 6Lh ediu39un by Yunus A cengel and Michael A Bales The Fulluwing slides Are me Lhe Instructnr s Seaiun of Lhe Mchw Hill Web Site and Have Been Mudil39ied far This Cuurse February 2 2009 Lecture Chapter 7 Entropy Objectives Apply the second law of thermodynamics to processes De ne a new property called entropy to quan ify the second Iaw effects Establish the increase 0 entropy principle Calculate he entropy changes that take place during processes for pure substances incompressible substances and ideal gases Examine a special class of idealized processes called isentropic processes and develop the property relations for these processes Derive the reversible steady ow work relations Develop the isentropic ef ciencies for various steady ow devices 39 w ENTROPY u III II III I I 39L cIasIus I Inequamv smered III mesvsem m We Mme We The equamv III me cIausIus Inequamv IIn mmUs memmv IanIaHv nuus1 IMeYHaIIV VevevsbIe mama and me InequaIIw InIIIIe ervevsbIe ones II I II IIIIII I W H A quame Muse CVCIIC ImegIaIIszeIn Is a Pmpenvhkevmume Emmpv Is an emnsIve IIIII pmpenv m a 951em II II I III The erman Change between Iwn specme s131es Isme same Wnelhev e net mam III vnIume the pvncess Is VeVeYSIbIe m InevevsIbIe WWW W a ccheI e s g s A Special Case Internally Reversible a mvszem Isnlhermzl Heal Transler Prncvssvs 7 WI II A H I J I I I II IIIIs equannn Is PamcuIavIv useIuI InI eIerWVVQ me erman Changes nIIIIeImaI enevgv ISSENDWS 5 THE INCREASE OF ENTROPY PRINCIPLE In I I IIIIIIIII III IIIIIIII II WeequahwhmdsInvammemauv IIIM I III VEVEYSHE pmuessandme InEmAaIIW HIWm mvanwevevsmepmuess WIIIIIII Acmecnmpnseu Ia V VeveYsIbIe and an 39 IneveIsIzIepmcess m m m M 5m emmnv Is yenemednv mazmwg an IVYeVeVSIbIe pmcessI smms QenevaIInn Is due eMWeIVIn We Pvesence m WYSVEVSIIZIIIIISS The erman geneIsIInn s s aIWavsa mm quanmv M 2m Canme eIIIInpvnIs svsIem mm a PmceE decveasy Mmm meme em 2 an mumquot summv The erman Change m an sn aled svstem sme am the emmpv ehangesmnsmmpeneme and 5 Have essman zem J u m m UIHe HM V 1th Themaease Rumvalmumx WWW n Impnwl k Wm Pvmmp e ru quot H mm an sn aled svstem Some Remarks about Entropy mm b L meve 2 m 3 Thepe n ma w eegvaeeebvm mnbenegalwe mm emmpv eeneyan en Pmcess u e a serum mum pevinrman Pmcesses can nmuv nnW nm m m a wnam dwemnn eclmn A pmeess mus1 Pm ednnmal enmpnes wm me muease meman pvmmp e ma 5 5 a n 2 sma vm alestms 2 Emmiannunwnsewed muem and s nusum we asme canservamm w 9 quotany 7 we Emmpwscensewee swung me meauzee revs MW and mueases duvmg a adua Pmcesses smxe Pmuesses nee evengmeenng svslems 5 Wu x anquot emesencemwvevevsmmues We Wm change a a and emapygeneramms a measuv the 5 m ag mesmmemevevsmumeseunngmat sn usee m e abhsh anena ee mengmeenng dewces Enlva s a pmpenv arm musme vame m emmpvma svstem s wed meme aale the svstem s wed m n M My m e x The eman m a we smaanee EWDPY charm s delevmmed quotum memmes M hke mhev pmpemes r Hy 7 m ENTROPY CHANGE OF PURE SUBSTANCES Schemaucnnhe Fmagmm vmmev 7 ISENTROPIC PROCESS S A pvucess dunng Wm m emmpy yemams cumam s caHed an isenlrnpic muss AIv m Mmpmw m uquot Mum Wm y m Dunng an WemaHv vevevsm e amabalm semmmc Pmcess me erman remams cunaam The semmmc pmcess appeavs as a vemcahne mum on a mmamam PROPERTY DIAGRAMS INVOLVING ENTROPY healuansmnm WIW v miede vevemb e Pmcesses Fm mum aeauwnw w 7m My devwces mevemm maanm Man an Ipsmagvam sa y he m m 7 rm M m Ha znmammancemwsa m easuvenwrevevswbumes Whlllu magmm The maximum u WHAT IS ENTROPV um u v annzmann menuquot r A m R f A Pure cvalaHme sub ance at absnh e zem A The mm m mmecmav msnmev emmpv m a sub ance measesas msnvgamzeu enevgv nes nm create much Vales usem emamnma evhnw amems m meme m evapn The padmerWnee MK dune an a gas mueases me eve mmsnmev emmpv mm gas anmus mm s degvaded duvmg W5 pmcess Mheabsenuen Dunngaheal mam msmg a quotmy pmuess m mwgmbvavmaung nulnum39 9me WWW mcveases a e meals anv msn m muease mme emmpvxan mus um MW emvnpvn hecnm mva y a ma WWW unsetsthe deaease degvaded duvmmms pmcess m me erman m me hm body 3 THE T ds RELATIONS quotU M hum m w m m y mm 11 mm yh d v J h 11 l The Tdsve almns ave mm m bum revevswb e and mevevswb e me semnd ms swam Pmuesses and my bum doses and open smems Dmevema changes I m emmpwmems H mmhewmpemes ENTROPY CHANGE OF LIQUIDS AND SOLIDS mch y m an r y r H m m wn l r lhwm uHm a r Hy Fm and semmmc pmcess m an mmmpvesswb e sub ance r lummym mg gquot u me the ms1 Tdsvelalmn me me second Tdsvelalmn s my 7 l m Hr m a r ItltIu r J 7 17 MI m s y u us Mr A n an w mlvhm mr wHVMV 5 THE ENTROPY CHANGE OF IDEAL GASES Constant Spec c Heats Approximate Analysis u l w qu gt m qu a A a an F r w suu u m ul w y ll MI W m kw quot Erman mange m an meal gas on a W umlrmnle bass l 7H I x mm as sr mlslrmquot m M Undevlhe cunaam pecmcr heal assum mmn lhe Specmc heallsas mm 0 s1 m meavevagevalue w Variable Spec c Heats Exact Analysis Wechnnseabsnlmezemaslhevelevence m m t tempevaluve and new a mam a as u w l m w39v m I M l H l I M V mm On a umlrmass bass The eman m an ls meal gas dapends an a Hm an Al bnlhTandPThe I mquot On a umlrmnle basls l Mu lsentroplc Processes of Ideal Gases Cnnslznl Spe cH 39 m s r Setunmmseq equsun zem Mast r r ems ApprnximmeAnzIyslsj m u m I mu vuuvmu Wquwe A W Wu u e The semmmc ve ahnns m mea I gasesavevahmmmesemmmc Pmcesses m mea gases emu y r f y mu va quot W w Isentropic Processes ofldeal Gases mm m u V2 hleSpe cHemstExztlAnzlys m w W P N n u q rm m w m y p r I w u gt we u mm I w s m I39 rs y imsme ve alwe speak vu ume v ems Fs me mauve me me The use m was my es cu almg me ma empevaluve uunng an semmmc Pmcess u 1 m m r The use m vdala vm m cu almgme na I tempevaluve uunng an I W semmmc pmeess REVERSIBLE STEADVFLOW WORK A mee sea v nwm s Hqummmugh s devmemal mvnwes rm vmk m such as a we semnnmhe m zem Bemnmh equsunn y WW mum m Whenkmehcand Patenm enew es ye nevhwme evadmns Hevmws pmuueemv ennsumemv anddn u a ea vr nw systems dame Pmnnhm SlezdyrFlnwaicvs Deliver the mast and Cnnsume the Least Wnrkwhen the Pmmzss ls Reversible Takmg heal mum and Walk umpm pnsmve y mue m Revevsme J r A vevevame mvmne dehvevs we walk man an wvevevsm e one bmh upevale betweenme Ems em aales nducmg names such as m we va Wnenmev npeva e vevevswb v 22 MINIMIZING THE COMPRESSOR WORK Wmmmna v pmmmmm new semmmcPv cnns13M I y w PanmC PW mn ar w r Fkv magvam s m semmpm Panmc and mmevma mmmessmn pmcesses between e same mama hmns smhevma Pv camam m m he amauanc cummessmn M canaam requwesme mammum vmk anmhe smhevm 1 ma smn r m requwesme mwmmum Why Mult stage Compress on w lntercool ng Thegaswsmmmessed m 51am and named r Hm w m N Am r ISENTRDPIC quoti 39i i 39i EFFICIENCIES OF i STEADYFLDW DEVICES 333 EC The iseniunc pincess invnives rm J iiieieisiniiiessniseivesssineiiesi pines in adiabatic devices n lsenlropic Ef ciency iii iiim in o Turbines ine Muiagism ini 1 we aauai and i iseniinpic 1 Pincesses man adiabalm uvbme 25 lsentropic Ef ciencies of Compressors and Pumps i i i ii i ii i Wieniineiicm meninieneiiies ie neiiiiiie i l l39 in a i i pump ii i Mi ismnennai ine Muiagiam ii muech unheaduaiand isemmpic i Pincesses m an amaba ic mmpies Sm asquot in use isenmnc mm in a WWW mi in can you use ismneimsi emueno mi mmmem anadiabaliccnmpvessnm m nimi lsentroplc Ef ciency M r of Nozzles iiinsii ii AM i ii quot ii m nine iniei veinci v mine mm is smaii ieiaiive in me em veinu vime enevgvbaianm is iisii v Asubaanmieaves m Wei quotmiss 31 a iiiiiimim noun 7 m x mini am 7 nigneiiempei is thus a invei veinc v as a iesuii niwiainn ENTROPY BALANCE 1335 111 333 h V 303333 stem AS Entropy Change of a S1 1 men M Wnemne pvnpemes the svstern are nm ummvm r r n Enevgvand erman ba ances my a 95197 Mechanisms of Entropy Transfer Sm and Snm 1 Heat Transfer Emrnpwansverwnearnansver um Emmnyuansuhywnm WW quot quotW M n 4 g h n mm H W39 Heamansver s amavs H amnmpamed W emmpvhansiey m We amount m WI were T s as the nnunaamemperame a emmnvacmmpamesm asn cmsses We svstern buundavv am erman mav be Generated mnm We svstern as work 5 mssmated mm a 655 useM vnnn menemv 1 Mechanisms ofEntropy Transfer SW and sM 2 Mass Flow Ennnwnansnr w mass 14 Comm volume r r v e m m rnr WA When we pmpemes the mess change am We pmcess mm Mass cumams enuupy as wen as energy and We mass uw mm m um u sys12m s a ways accumpamed by energy and ennupy nansm Entropy Generation SEEquot Wow genmm 7 nmsmesvslem 39 7 739 77 quot bu anescanb r accnumedtn H vanganemmw M n m I We quot memeusme r r r dudesthes anmtswmmemate sunnunmngs r 5 7 S Wlk Mm 5 W Inquot Mm W quotat 20 My 4 Mechammmemvnpwamemya r Eeneva sv em Closed Systems mm xquot r HM v mm 75m m wan em 8 70 H VA Control Volumes r m m m favemamsmmamm meemmpvmamm mmsen a vmumechangesasa vevevswz e amass ream m mass owes me asn mwsmmugh a as heal tvans39ev smmes eam ama am 7 n unwume 33 EXAMPLES Entropy balance for heat Entropy balance for a mromrng process Emropy generation associaxed with a heat transfer process x r a eraprraar vemesemmmn ar amrapvaeneranan dunng a heat ransrar Pvacess 35 prauar a We tempevmme dmevence


Buy Material

Are you sure you want to buy this material for

25 Karma

Buy Material

BOOM! Enjoy Your Free Notes!

We've added these Notes to your profile, click here to view them now.


You're already Subscribed!

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

Why people love StudySoup

Bentley McCaw University of Florida

"I was shooting for a perfect 4.0 GPA this semester. Having StudySoup as a study aid was critical to helping me achieve my goal...and I nailed it!"

Kyle Maynard Purdue

"When you're taking detailed notes and trying to help everyone else out in the class, it really helps you learn and understand the I made $280 on my first study guide!"

Steve Martinelli UC Los Angeles

"There's no way I would have passed my Organic Chemistry class this semester without the notes and study guides I got from StudySoup."


"Their 'Elite Notetakers' are making over $1,200/month in sales by creating high quality content that helps their classmates in a time of need."

Become an Elite Notetaker and start selling your notes online!

Refund Policy


All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email


StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here:

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to

Satisfaction Guarantee: If you’re not satisfied with your subscription, you can contact us for further help. Contact must be made within 3 business days of your subscription purchase and your refund request will be subject for review.

Please Note: Refunds can never be provided more than 30 days after the initial purchase date regardless of your activity on the site.