### Create a StudySoup account

#### Be part of our community, it's free to join!

Already have a StudySoup account? Login here

# Galileo and Einstein PHYS 6090

UVA

GPA 3.93

### View Full Document

## 31

## 0

## Popular in Course

## Popular in Physics 2

This 12 page Class Notes was uploaded by Ubaldo Jacobson on Monday September 21, 2015. The Class Notes belongs to PHYS 6090 at University of Virginia taught by Richard Lindgren in Fall. Since its upload, it has received 31 views. For similar materials see /class/209739/phys-6090-university-of-virginia in Physics 2 at University of Virginia.

## Reviews for Galileo and Einstein

### What is Karma?

#### Karma is the currency of StudySoup.

#### You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 09/21/15

When we think of the term relativity the person who comes immediately to mind is of course Einstein Galileo actually understood what we now call the principle of relatiVity before Einstein He explained it carefully in his book Two New Sciences Today we will discuss what Galileo understood about motion including projectile motion and the principle of relatiVity 1 v v 1 7 v VV0m xith Ut x 1 2v0 v0 att vot ls 2at2 Suppose we are observing a motion in which the initial speed is not zero as we have assumed so far For example we could throw a rock upwards in the air How do we handle this We describe this graphically above An initial speed v0 exists and acceleration begins at t 0 This just means that the speed increases or decreases starting from its initial value How can we evaluate the distance traveled The distance is always given by the average speed times the time For uniform acceleration the average speed is just the average between the initial and final values Inserting our expression for the final speed we have the result shown above A simple interpretation of this result is that the object moves as though its initial speed continued unchanged and in addition the acceleration occurred It is as though the initial speed and the acceleration are unaware of each other PLE Tli Choose upward to be positive displacement and speed This choice is arbitrary Then V V0 gt Let V0 Sims and g 10111 When does the rock get to the top of its motion 057101 so 510t and t05s How high did it go y yt71s 2gt3 505 7 5052 25 7125 125m Let s look at a simple example illustrating these results This is something we have all done Throw a rock in the air To describe motion we must choose a coordinate system think Ptolemy and Copernicus Of course our coordinate system is fixed on the surface of Earth but we must still choose whether up or down displacements will be labeled positive This is arbitrary The initial speed and g are opposed so one has to be negative When does the rock reach the top of its motion How do we define the top of the motion Try tossing your pencil in the air in front of you What happens at the top It stops and turns around When you walk down the hall and turn around because you forgot something you must stop in the process So to find t at the top set V 0 and solve for t To find how high it went we just use our expression with correct signs for displacement including an initial speed You could now find how long it stayed in the air by finding the time for it to fall from rest from a height of 125 m QUESTTH For the rock just thrown what was its acceleration at the very top of its motion A 10 n Here is a short quiz Think about this for a minute or two and then we will vote The question posed here is must the acceleration have any special value when the speed is zero The answer is no Acceleration is the rate of change of speed and does not depend on whatever value the speed has at the moment The only question is whether the speed is changing or not and of so at what rate In this case the acceleration due to gravity acts at all times for all unconstrained bodies They always accelerate downward until they hit the ground n U L PL Cart 011 track with motion sensor Start it initially moving upwards This is analogous to throwing the rock up SHOW cart on inclined track starting it with an upward push from near the end of the track Display X VS t It first decreases then increases This is like measuring the position of the rock thrown up from up in a tree SHOW speed VS time Note it goes through zero at the top of the motion as we said for the rock SHOW acceleration VS time It remains constant throughout the motion except at the ends when other forces enter Here we extend our earlier equations by adding an initial displacement Let y0 50m y5075t2 When does it hit Answer when y 0 so 5t250 and t210 so t32s Instead of adding an initial speed let s add an initial displacement We drop a rock from the top of a building 50m high We could use a coordinate system with y 0 at the top of the building but instead let s choose ground level as our zero of height Then clearly we just add y0 to our equation for displacement How long until the rock hits ground This occurs when y 0 Solving for t we find 325 So far we have dealt with motion in one dimension only A car is driven down the street a rock is dropped or rolled on an inclined plane etc How do we handle situations in which more than one dimension is involved For example when a baseball is thrown and caught it moves both horizontally and vertically Our whole understanding of this field hinges on an important experimental discovery The observed motion of the baseball is the result of two separate motions followed simultaneously by the ball one horizontal and the other vertical Furthermore these two components do not interfere with each other in any way They each proceed as though the other were not taking place Galileo discovered these things and describes them in TNS We begin with a simple and perhaps surprising experiment We have a spring driven device that can shoot one sphere horizontally and simultaneously drop another The question is which one reaches the oor first SHOW shoot and drop demo We can hear that they both land at the same time What this experiment shows is that the vertical motion is not in uenced by a ball s horizontal motion The ball shot sideways falls just as fast as the dropped ball If we were to do the same thing with a high powered ri e the result would be the same The shot bullet would land at at the same time as one that was dropped when the trigger was pulled This experiment is similar to the one we just saw except vertical and horizontal motion are interchanged Two balls roll down identical inclines gaining the same speed The lower one then rolls along a horizontal track The upper one rolls along a shorter horizontal plane and then falls towards the lower track It lands on top of the lower rolling ball showing that the two balls continue to have the same horizontal motion The horizontal motion of the upper ball is not in uenced by its vertical motion The conclusion we draw from these two experiments is that the vertical and horizontal components of the motion of an object are independent of each other It is as though these two dimensions exist in different universes In the above experiment the horizontal motion of the upper ball remains what it was as it left the track This is consistent with Galileo s principle of inertia No change in its horizontal speed occurs because no horizontal forces act on it Another way of saying this is that the principle of of inertia applies separately in each dimension of the motion The overall trajectory of the upper ball is a superposition of its horizontal and vertical motions Parabola This is called projectile motion The equations that describe the X and y components of the motion of the upper ball in the previous experiment are familiar to us In the X direction the velocity is constant so X increases in proportion to t In the y direction we have a falling body dropped from a height yo We can eliminate t from the two equations by solving the first one fort and substituting it in the second The result is a parabola The trajectory of a body moving with a constant horizontal velocity and constant vertical acceleration is a parabola This is referred to as projectile motion EXamples are baseball football tennis shooting a bullet etc In our treatment we are ignoring the force of the air on the moving body As we have seen this is only accurate when the speed of motion is small enough E A building is 20m high A rock is thrown off it horizontall the rock land Time in the air V Vo N201 20 7 5t 0 t2 4 t 2 seconds X vot 132 30m Here is a simple example of projectile motion The rock thrown from the building continues moving with the same horizontal speed throughout its motion All we need to know is how long was it in the air This can be found using its vertical motion which is the same as if it had just been dropped From this we find that it lands after 2 seconds And now we know how far it moved horizontally during this time Person 011 a moving ship drops a rock They see it fall straight down to land at their feet Someone 011 shore sees the rock continue to move horizontally as it falls and says the trajectory arabolic Another observer 011 another ship sees it move horizontally with a different speed and sees a different parabola They all see it land at the same time Galileo concluded that the horizontal motion cannot influence the vertical motion and that what takes lace 011 the shi is inde endent of the shi s lotion He arguedt s applies to all pl and biological proce The same principle applies to what takes place 011 a moving Earth Galileo thought about the question of a moving Earth If the Earth moves why do we not notice this motion as Aristotle claimed we would Here is the thought experiment he carried out in answer to this puzzle A person on a ship drops a rock To that person its trajectory is a straight line An observer on shore sees the trajectory as a parabola Someone on another ship sees yet a different parabola All of them are making valid observations They all see it land at the same time Galileo concluded that the vertical motion of the rock must in principle be independent of its horizontal motion Furthermore he concluded that everything that happens on board the ship must be independent of its motion He argued that whatever you take with you on the ship insects fish physics experiments etc will be unable to detect the horizontal motion of the ship He was assuming of course that this motion is perfectly uniform and smooth This is called the Galilean principle of relativity and explains immediately why we do not sense the motion of the Earth about the Sun This car with spring cannon illustrates Galileo s principle of relativity The cannon shoots a ball straight up As it returns it is caught by the funnel When the car is stationary in the room we see the ball go straight up and down When the car moves relative to us we see a parabolic trajectory because now the ball has a constant horizontal velocity along with its vertical freefall motion But the ball is still caught by the funnel because the ball and car have the same horizontal velocity The car and ball move along together and the result is the same as if it were stationary in the room Its uniform horizontal motion is unimportant even undetectable by any experiment carried out on the cart

### BOOM! Enjoy Your Free Notes!

We've added these Notes to your profile, click here to view them now.

### You're already Subscribed!

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

## Why people love StudySoup

#### "There's no way I would have passed my Organic Chemistry class this semester without the notes and study guides I got from StudySoup."

#### "I made $350 in just two days after posting my first study guide."

#### "There's no way I would have passed my Organic Chemistry class this semester without the notes and study guides I got from StudySoup."

#### "It's a great way for students to improve their educational experience and it seemed like a product that everybody wants, so all the people participating are winning."

### Refund Policy

#### STUDYSOUP CANCELLATION POLICY

All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email support@studysoup.com

#### STUDYSOUP REFUND POLICY

StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here: support@studysoup.com

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to support@studysoup.com

Satisfaction Guarantee: If you’re not satisfied with your subscription, you can contact us for further help. Contact must be made within 3 business days of your subscription purchase and your refund request will be subject for review.

Please Note: Refunds can never be provided more than 30 days after the initial purchase date regardless of your activity on the site.