New User Special Price Expires in

Let's log you in.

Sign in with Facebook


Don't have a StudySoup account? Create one here!


Create a StudySoup account

Be part of our community, it's free to join!

Sign up with Facebook


Create your account
By creating an account you agree to StudySoup's terms and conditions and privacy policy

Already have a StudySoup account? Login here

ENGR 222 Thermodynamics Notes

by: Peter Idenu

ENGR 222 Thermodynamics Notes ENGR 222

Marketplace > Louisiana Tech University > Applied Science > ENGR 222 > ENGR 222 Thermodynamics Notes
Peter Idenu
LA Tech
GPA 3.5

Almost Ready


These notes were just uploaded, and will be ready to view shortly.

Purchase these notes here, or revisit this page.

Either way, we'll remind you when they're ready :)

Preview These Notes for FREE

Get a free preview of these Notes, just enter your email below.

Unlock Preview
Unlock Preview

Preview these materials now for free

Why put in your email? Get access to more of this material and other relevant free materials for your school

View Preview

About this Document

These notes include lectures on energy, heat and work, the first law of thermodynamics and pure substances and phases.
Class Notes
25 ?




Popular in Thermodynamics

Popular in Applied Science

This 55 page Class Notes was uploaded by Peter Idenu on Monday October 5, 2015. The Class Notes belongs to ENGR 222 at Louisiana Tech University taught by Dr.Moore in Summer 2015. Since its upload, it has received 25 views. For similar materials see Thermodynamics in Applied Science at Louisiana Tech University.


Reviews for ENGR 222 Thermodynamics Notes


Report this Material


What is Karma?


Karma is the currency of StudySoup.

You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 10/05/15
Energy Transfer Heat Transfer amp Work ENGR 222 Thermodynamics Louisiana Tech University Fall 2015 Unauthorized reproduction is prohibited Forms of Energy Energy can eXist in many forms Thermal Mechanical Kinetic Potential Electric Magna c Specialized Chemical gt rarely discussed Nuclaar in this course The sum total of the above forms of energy represents the total energy E of a system On a per mass basis eEm kJkg Thermodynamics is mostly concerned With changes in energy AE rather than an absolute value Total Energy of a System Sum of all forms of energy ie thermal mechanical kinetic potential electrical magnetic chemical and nuclear that can eXist in a system 0 For systems we typically deal within this course sum of internal kinetic and potential energies EUKEPE E Total energy of system U internal energy KE kinetic energy mV22 PE potential energy mgz Microscopic vs Macroscopic Forms of Energy Iquot Microscopic farms 0f energy are related to the systemh molecular structure an degree of rueleeulaar activity Mieroseepie energy farms ere independent efutside reference frumee 39 The sum of all the systemi s micmsmpie turns it ehergy is its internal energy U it e per mess basis HIE m kl 39 By centresL maeruscopie forms if energy are those that are dEpeedee on err outside reference frame Kinetic energy reeleeity relative tr tether 1 r2 KE m kl kequot Peterrtiel energy elere tieh reletirre to whetquot k1 p6 e klkg Total Energy for Closed and Open Systems TotalEnergy E UKEPEUmImgz A M2 Change in Total Energy AE QU l AK E PE QU l mg z Total Energy Per Unit Mass 8 in k6 p6 u 92 M2 Change in Total Energy Per Unit Mass 36 u 168 3198 All T g z For most Closed systems Changes in kinetic and potential energy are negligible For open systems mass terms become mass ow rate pACV kgs A AC 7TD24 Vavg 70 pAcVavu and energy becomes energy ow rate 1 gt Steam E n ze E me R 39s v Mechanical Energy Mechanical energy The form of energy that can be converted to mechanical work completely and directly by an ideal mechanical device such as an ideal turbine Kinetic and potential energies The familiar forms of mechanical energy 6 V f Mechanical energy of a new 39 5quot owing uid per unit mass 39 P V2 Rate of mechanical energy of Ell39l lj39l Inel39ll l l m 7 a owing uid Change in mechanical energy of a uid during incompressible ow per unit mass 39 P2P1 Vii v I I Aemech p 8Z2 Z1 M kg Rate of mechanical energy change of a uid during incompressible ow VVP2P1 i39nech l mech l9 Internal Energy Molecular translation C i spin of microscopic Molecular rotation lilcctron Molecular translation vibration o3 g3 quot Electron Nuclear spin The various forms energies that make up sensible energy Sensible and latent energy c Chemical energy Nuclear energy The internal energy of a system is the sum of all forms of the microscopic energies Sensible energy The portion of the internal energy of a system associated with the kinetic energies of the molecules Latent energy The internal energy associated with the phase of a system Chemical energy The internal energy associated with the atomic bonds in a molecule Nuclear energy The tremendous amount of energy associated with the strong bonds within the nucleus of the atom itself Heat and Heat Transfer Heat The form of energy that is transferred between two systems or a system and its surroundings by Virtue of a temperature difference The only two forms of energy interactions associated with a closed system are heat transfer and work The difference between heat transfer and work An energy interaction is heat transfer if its driVing force is a temperature difference Otherwise it is work System boundary Room ah 250C J No heal Heat Heat transfer 8 13 1618 gt Heat I i Win eld I z I l l CLOSED l SYSTEM 1F WOI k I i I I l Eraal O 25 C m constant L 4 Temperature difference is the driVing force Energy can cross the boundaries for heat transfer The larger the temperature of a closed system in the form of difference the higher is the rate of heat heat and work transfer Energy Transfer by Work Work The energy transfer associated with a force acting through a distance A rising piston a rotating shaft and an electric wire crossing the system boundaries are all associated with work interactions Traditional Sign convention Heat transfer to a system and work done by a system are positive heat transfer from a system and work done on a system are negative Alternative to sign convention is to use the subscripts in and out to indicate direction This is the primary approach in this class and in the textbook Sun39oundings W Z J Work done per unit mass Qin Qoul l Power is the 30 work done per work unit time kW System I l I l Wi n I Wout L l Specifying the directions of heat and work Heat vs Work 2 i div V2 V1 2 1 Both are recognized at the boundaries of a system as they cross the boundaries That is both heat and work are boundary phenomena Systems possess energy but not heat or work Both are associated with a process not a state Unlike properties heat or work has no meaning at a state Both are path functions ie their magnitudes depend on the path followed during a process as well as the end states Properties are point functions have exact differentials d Path functions have inexact differentials 5 AVA 3 m3 WA 8 k Z 3 I1131WB 2 m3 5 m3 V Properties are point functions but heat and work are path functions their magnitudes depend on the path followed 2 l Electrical Work Electrical power When potential difference and current change with time 2 J wax Id 1 When potential difference and current remain constant VI 1 E I Vl R lt lt gt V2R Electrical power in terms of resistance R current I and potential difference V Mechanical Forms of Work There are two requirements for a work interaction between a system and its surroundings to eXist there must be a force acting on the boundary the boundary must move 39 4 S gtl If there is no movement no work is done The work done 1s proportlonal to the force applied F and the distance traveled s 12 Energy Balances amp The First Law of Thermodynamics ENGR 222 Thermodynamics Louisiana Tech University Fall 2015 Unauthorized reproduction is prohibited The Three Maj or Principles of Thermodynamics Conservation of Mass Thermodynamics Conservation of Energy Entropy First Law Second Law Review Total Energy for Closed and Open Systems TotalEnergy E UKEPE Ummgz A M2 Change in Total Energy AE QU ERIE EPE EU mg z Total Energy Per Unit Mass 6 ta k9 138 ta g M2 Change in Total Energy Per Unit Mass 36 u 168 3198 u T g z For most Closed systems Changes in kinetic and potential energy are negligible For open systems mass terms become mass ow rate z QAV 165quot A 2 p p C AC7TD Van quotO7 pAcVavu and energy becomes energy ow rate 1 gt 9 Steam E rite E me R s V The First Law of Thermodynamics The first law of thermodynamics is essentially the conservation of energy principle Energy can be neither created nor destroyed during a process it can only change forms 39quot PE 10 U Q quot 5 k M KE 0 Energy being converted A 2 I from PE to gil it KE total energy PE2 7 k remains v m KE 3 k unchanged The change 1n total energy for a potato in an oven is equal to the amount of heat transferred to it The First Law in Action Simple Examples Q 3 Id Adiabatic The work electrical done on an adiabatic system is equal to the increase in the energy of the Battery SyStem Qin 15 kJ Adiabatic In the absence of any work interactions the energy change of a system is equal to the net heat transfer The work shaft done on an adiabatic system is equal to the increase in the energy of the system Wsmin8k1 Putting the First Law to Work Energy Balances The net change increase 0r decrease in the t0tal energy 0f the system during a pr0cess is equal to the difference between the t0tal energy entering and the t0tal energy leaving the system during that pr0cess Total energy gt Total energy gt Change in the total entering the system I leaving the system energy of the system quotnut Esystel n Qoul 3 The energy Change of a system during a process is equal to the I I l AE15 36 I I net work and heat I I I I I 18kJ transfer between the system and its surroundings lab in Z 6 Id Energy Change of a System Components Energy Change Energy at final state Energy at initial state AEsystem Efinai Z 1 AE APE Manifested as Change in temperature Internal kinetic and potential energy Changes AU mwg Ln Stationary Systems A E Adiabatic Z Z2 APE 0 VI 3 gt AKE O mgz2 Z1 AE AU AE8kJ 8kJ sh in Means of Energy Transfer Heat transfer Work transfer Mass ow open systems only Using in out sign convention in nut nut r nnt n1assjn massgnut system E k E DUI ELSE in V Net energy transfer Change in internal kinetics by heat work and mass potential etet energies Rate of net energy transfer Rate of change in internal by 113 W fkt and mass kinetiet potentiah etetr energies dEdt r Closed Systems vs Open Systems Cycles For a closed system cycle Where the end state and mm ELI E11 cycle initial state are identical the sum of the energy P A For a cycle AE 0 changes around the cycle must be zero thus Q W Changes in energy for a closed system involves only heat transfer and work Transfer of mass in open systems may also cause a change in energy as the mass carries energy With it Example increasing mass flow rate or increasing temperature of a constituent stream Qnet Wnct ltv m 2 kgS 1723 3 kgs I I I I I I I I I CV I I I I I I I m3 ml 1713 5 kgs Energy Efficiency aSY 00110619 Desued output Performance Required input but BE AWARE OF THE APPLICATIONSPECIFIC DEFINITION Example Hot water heaters efficiency 2 energy delivered to houseenergy being supplied to the water heater pp7879 in CampG for details For electric water heaters 100 of electrical power transferred to water small losses through container walls For gas water heaters definition of heating value for gas fuel drives the efficiency lower AND there is significant cost difference between supplying gas fuel vs electricity Type Ef ciency Gas conventional 55 Gas highefficiency 62 Electric conventional 90 Electric highef ciency 94 Examples Generator A device that converts mechanical energy to electrical energy 0 Generator efficiency The ratio of the electrical power output to the mechanical power input 0 Thermal efficiency of a power plant The ratio of the net electrical power output to the rate of fuel energy input norera 7cornlmration ntl39l l39l39l l l ngenerator OVCfall Cf ClCIle Of a pOWCI plant Overall efficiency is the product of the individual component efficiencies Lighting efficacy The amount of light output in lumens per W of electricity consumed A lSW compact uorescent lamp provides as much light as a 60W incandescent lamp ISW 60W Efficiencies of Electrical and Mechanical Devices Fan Mechanical Efficiency Mechanical energy eutth Enmmm ll E mm gg 5quot W Ii 050 kgs mm 1 HPUE Emccl i in Emechdn The effectiveness of the conversion process between the mechanical work supplied or extracted and the mechanical v0a12ms energy of the u1d 1s expressed by the pump effic1ency and 1 2 turblne effic1ency pI 2 p2 Pump Efficiency Energy Consuming Devices 77 Ali39mmm mvgZ V mcch fun 39 39 Mechanical energy increase of the uid mmmi Wpuml m Wmm m Wquot 39 Tinmm w 050 kgs 12 ms 2 Mechanical energy input iiiSham WWW 50 W r r r 072 mech uid mechgut I IlEGl Li The mechamcal Turbine Efficiency Energy Producing Device effiCiGIle Of a fan iS the Mechanical energy routpnt WWW Wurmm rat Of the klnetlc nergy Tilurh39inc Mechanical energy decre ge Ohm uid EWMUM Wurhim of an at the fan eX1t to the mechanical power input AEmech uid Ememi El e h ut Efficiencies of Electrical and Mechanical Devices Mechanical pwer utput ngmfmn n Pump tinctor V 1dr H H Electric power input Wigwam Eff1c1ency Electric utput Wmmim Generator 7133961 1xfif ilt tquot l 1 Mechanical input Wall m EfflClenCY Wpu 1391in iquotlquot1EElL lJ id Pump Motor npump 139139Ictcr 7 1311391391p7 meter 2 Weiech Weiectiin overall EfflCICnCy Weiectiout Welectiout Turbine Generator ntul39hine gen ntul39hinengenerator O 39 39 verallEff1c1enc Wu 1quot inc it I mech fl 1 id I y nturbinc 03975 ngencrator 097 f Turbine MGeneramr The overall efficiency of a turbine generator is the product of the efficiency of the turbine and the efficiency of the generator and nlurbine gen nturbinen generator represents the fraction Of the 075 X 097 mechanical energy of the uid 2 073 converted to electric energy l3 Pure Substances and Phases ENGR 222 Thermodynamics Louisiana Tech University Fall 2015 All images are used here strictly for academic purposes Most are from Thermodynamics An Engineering Approach and copyright McGrawHill Unauthorized reproduction is prohibited Processes amp Paths Process when a system changes from one equilibrium state to another one some special processes isobaric process constant pressure isothermal process constant temperature isochoric process constant volume isentropic process constant entropy Path series of states which a system passes through during a process Final state Proo ng path Initial state The Brayton Cycle The Ideal Cycle for Gas Turbine Engines Fuel gt A i Combustion chamber An opencycle gasturbine engine Compressor CD Fresh air 1 2 Isentropic compression in a compressor 23 Constantpressure heat addition 34 Isentropic expansion in a turbine 4 1 Constantpressure heat rejection w Cl Turbine gt qin Exhaust Heat gases I exchanger p Wnct Compressor Turbine il Heat exchanger qOUl A closedcycle gasturbine engine Rankine Cycle The Ideal Vapor Power Cycle The Rankine cycle is the ideal cycle for vapor power plants 1 2 Isentropie compression in a pump 2 3 Constant pressure heat addition in a boiler I 3 4 Isentropie expansion in a turbine Ema 4 1 Constant pressure heat rejection in a condenser iii in Lil Yb 5 G H Turine H pr rip5 in P n In p Condenaer The simple ideal Rankine cycle The Ideal VaporCompression Cycle The vaporcompression refrigeration cycle is the ideal model for refrigeration systems WARM environment Qll Condenser lt 3 22 X Expansion We Compressor 4quot l gt Evaporator QL COLD refrigerated space W m Isentropic compression in a compressor Constant pressure heat rejection in a condenser Throttling in an expansion device Constant pressure heat absorption in an evaporator This is the most Widely used cycle for refrigerators AC systems and heat pumps Pure Substances Pure substance A substance that has a fixed chemical composition throughout Air is a mixture of several gases but it is considered to be a pure substance VAPOR N2 LIQUID a H 2 0 Pure Pure Pure Substance Substance Substance Approx Composition of Air by Volume N2 78 O2 21 Ar C02 other 1 VAPOR LIQUID 7 AIR NOT a pure substance due to differences in composition When liquified Intermolecular Forces CK fl bits 3 J gtJ mtg s 35gt E5 3333 I forces fquot g a 39 83 r 39 4 gtJ gt3 gtJ 33 at t 3 In a solid the attractive ngclgswe and repulsive forces between the molecules tend to maintain them at relatively constant Attractive distances from each other Force f The molecules in a sis 3 solid are kept at 82 their pos1tions by the intermolecular Equilibrium position Weak interactions a Interatomic Distance Phases of a Pure Substance I Increasing Separation gt lt1 Increasing Strength of Interaction Phases of 21 Pure Substance Boron Nitride want 1 5131 2512 Fr ssurre Fa h jr Eiii r i39JELFF F H39 F a TIEEl I i NJ I i W 1i 7777777777777 WI quotIr H mm i Temp ratum Iii iii Phases of Pure Substances Carbon 100000 10000 1000 100 Pressure in GPa 001 0 1 2 3 4 5 6 397 8 9 10 r I I J I lI I I I 1 II I I I I I I I I I I I I I I I I I I I I I I I IE 2 Q6 dlamond gt 39 E E E K9 39 E a a diamond qqI 5 metastable graphite 39 39 a E I 0 14970 E graphite vq 39 metastable diamond 39 39 39 E E Z 11qu1d 39 I I I I M 39 metagt A 1 lq 3 39 graphite vapor I 0 E E 3939 3 7 III I I I l I l I I I I I I I I I I I I l l I I I I I I I l I I I I I I I l I I I l I I I I l I 0 1 2 3 4 5 6 397 8 9 10 Temperature in 103 K H 0 U1 I A C 3945 p s C CO H O N 101 Jeq 111 aJneseld 10 Phase Change Processes of Pure Substances Consider a Closed system of water Within a cylinder with a movable piston to Which we begin adding heat Compressed liquid subcooled liquid A substance that it is not about to vaporize Saturated liquid A liquid that is about to vaporize STATE 1 At 1 atm and 200C water eXists in the liquid phase compressed liquid STATE 2 P 1 atm T 100 C 2 Heat At 1 atm pressure and 1000C water exists as a liquid that is ready to vaporize saturated liquid Phase Change Processes of Pure Substances Saturated liquid vapor mixture The state at Which the liquid and vapor phases coexist in equilibrium Saturated vapor A vapor that is about to condense Superheated vapor A vapor that is not about to condense ie not a saturated vapor STATE 3 STATE 4 S t t d avggif P 1 atm P 1 atm T 1000C T 1000C Saturated liquid 4 Heat As more heat is transferred part of the saturated liquid vaporizes saturated liquid vapor mixture 3 Heat At 1 atm pressure the temperature remains constant at 1000C until the last drop of liquid is vaporized saturated vapor STATE 5 P 1 atm T 300 C 2 Heat As more heat is transferred the temperature of the vapor starts to rise superheated vapor Phase Change Processes of Pure Substances T OCA Entire curve for process 1s at constant pressure Q 300 2 Saturated 3 mixture Constant temperature during phase change 100 20 ltV Saturation Temperature and Pressure The temperature at which water starts boiling depends on the pressure therefore if the pressure is fixed so is the boiling temperature Water boils at 100 C at 1 atm pressure Saturation temperature T salt The temperature at which a pure substance changes phase at a given pressure Saturation pressure Psat The pressure at Which a pure substance changes phase at a given temperature mm 34 P kPa Saturation boiling pressure of sat water at various temperatures Saturation wzs m N Temperature pressure mpmmmm m g 253E r Pm kPa 600 1 1 525 39quot 5 55 551 H 400 5 552 1553333339 1 125 5222 wow 15 m WM 200 2 254 d 4 2 5 iiii l l a c ui to I I I I thesuriaceoilhe O i iii 0 so 100 150 200 lg 155 15 5252 255 1555 25s 5525 so 5555 M Effects of Phase Changes and Energy Latent heat The amount of energy absorbed T LE 3 2 or released during a phasechange process Variatian at tha standard Latent heat of fusion The amount of energy atmaapzharia praaaura and the absorbed during melting It is equivalent to b iling Emmiin 133m DEFEJEUFE 0f the amount of energy released during freezing Water With alti de atmaapharia ailing E lavatian praaau Fa tm para r39n IaF a tura Latent heat of vaporization The amount of energy absorbed during vaporization and it is equivalent to the energy released during condensation The magnitudes of the latent heats depend on the temperature or pressure at which the phase change occurs At 1 atm pressure the latent heat of fusion of water is 3337 kJkg and the latent heat of vaporization is 22565 kJkg The atmospheric pressure and thus the boiling temperature of water decreases with elevation t5 Phase Diagrams of Pure Substances T 0C1 37395 A T v diagram is shown While Pv and T P diagrams also used to illustrate phase change processes of pure substances Constant temperature during phase change but increasing volume Each curve is for a given pressu7 I l N Saturated vapor Saturated liquid l l Region of phase change substance is a mixture of liquid and vapor lb 0003106 v m3kg Landmarks of the Phase Diagram T A 0 saturated liquid line c 39t39 1 a 4 1 saturated vapor 11ne quot compressed 11qu1d reglon x Q37 0537 superheated vapor reglon COMPRESSED 39 LIQUID QN 39 saturated 11qu1d vapor mlxture REGION SUPERHEATED reglon wet reglon VAPOR REGION T It U SATURATED 9 LIQUID VAPOR REGION P 7 0 O l l f l T amp Cr Critical 13 point Q Tv dIagram of a pure substance gt Phase change At supercritical pressures P gt Per there is no distinct phase change boiling process CI Pv Diagrams pI l Critical point I SUPERHEATED VAPOR REGION COMPRESSEDX LIQUID x REGION 79 t SATURATED 1 fonsr gt T LIQUID VAPOR REGION I V lt What about solid phases 100000 10000 1000 100 Pressure in GPa 001 O 1 2 3 4 5 6 397 8 9 10 I I I J I lI I I I I II I I I I I I I I I I I I I I I I I I I I I I I IE 2 Q6 dlamond gt 39 E E k 39 E a diamondihr wu 5 metastable graphite 39 39 a E I 0 H970 E graphite vq 39 metastable diamond 39 39 39 i E Z 11qu1d 39 I I I I M f metagt A 1 lq 3 39 graphite vapor z I a E E 139 7 I39I I I I I I I I I I l I I I I I I I I I I I I I I I l I I I I I I I I I I I I I I I I l I I I 0 1 2 3 4 5 6 397 8 9 10 Temperature in 103 K L C U I A C 3945 p s C CO p a O N 101 19q 11 SJHSSQJECI IQ Expanding the Diagram Pll Critical point Critical point VAPOR LIQUID VAPOR SOLID SOLID LIQUID LIQUID VAPOR LIQUID VAPOR Triple line l Triple line L r SOLID VAPOR SOLID VAPOR Pv diagram of a substance that contracts on freezing V Pv diagram of a substance that expands on freezing such as water 03053 quot avgljk 39 39 quotZrquot VAPOR g Tr1p1e p01nt for water 0 quotE 3 9339 0303 2 Ttp 001 0 At the triplepoint pressure and temperature a substance eXists in three phases in equilibrium Ptp 06117 kPa LIQUID 20 l Is it always solid liquid vapor for phase changes Sublimation Passing from the P Substances Substances sol1d phase d1rectly 1nto the that expand that contract vapor phase on freezmg on freezmg Critical pomt 6 20 3 z a 39 a i 3 39 A o J o o a r quot 0 0 I ta 0 n0 v I b ag e quoton 20 a quot0 539 039 39 quot l v 0 0 5 3 3quot a g 3 v Trlple pomt 39 39r Jig Java 33 B u a u to 39 3 gt VAPOR 00 39c lton 9 5 x 0 SOLID 9 PT diagram of pure substances At low pressures below the triple point value solids evaporate Without melting first sublimation Consolidating T v Pv and P T Diagrams The PvT surfaces contain a wealth of information but it is typically more convenient to work with twodimensional projections of the 3D space such as the Pv and T v diagrams Solid Liquid Critical Pressure Pressure PvT surface of a substance that contracts PvT surface of a substance that on freezing expands on freezing like water Review Mechanical Energy Mechanical energy The form of energy that can be converted to mechanical work completely and directly by an ideal mechanical device such as an ideal turbine Kinetic and potential energies The familiar forms of mechanical energy 6 Z 5 L Mechanical energy of a m h p g owing uid per unit mass 39 P V2 Rate of mechanical energy of Emech Inernech m 7 a owing uid Change in mechanical energy of a uid during incompressible ow per unit mass Aemh V g Z2 Zl Idkg p 2 Rate of mechanical energy change of a uid during incompressible ow a v a v i39nech l mech 31 Enthalpy and the Property Tables Enthal A Combination Pro ert py p y The combination or Pv is frequently h 2 u PU Idkg encountered in the analysis of control 39 volumes Fundamentally enthalpy is the combination of internal energy u and ow work Pv HUPV kJ H I I i A 7 P1 V1 I I AC 2 77D 4 I I I Control I I 1 I Vavg m quot pAcvavg i L19 Steam E the I I gt L Jl P2 V2 v For most substances the relationships among thermodynamic properties are too complex to be expressed by simple equations Therefore certain properties are frequently presented in the form of tables Some thermodynamic properties can be measured easily but others cannot and are calculated by using the relations between them and measurable properties The results of these measurements and calculations are presented in tables in a convenient format Saturated Liquid and Saturated Vapor States Table A 4 Saturation properties of water for various temperatures Table A 5 Saturation properties of water for various pressures A partial list of Table A 4 Uf specific volume of saturated liquid Specific volume 3 U specific volume of saturated vapor Sat m kg g Tgmp Egess Isad Sat 39Lfg difference between Ug and 39tf that is tfg Ug O a 1 UI va or Cf p Enthalpy of vaporlzatlon h Latent heat of T P sat V8 fg f I vaporlzatlon The amount of energy needed to 85 57868 0001032 2398261 aporize a unit mass of saturated liquid at a 90 70183 0001036 593 95 84 609 0 001040 1 9 8 temperature or pressure i i 1 Stir Specific Specific temperature volume of saturated Q7 1i uid SUPS EEEQTE q REGION Corresponding Specific Us gllgjgiggli x saturation volume of REGION pressure saturated vapor Working With Saturated Mixtures Quality x The ratio of the mass of vapor to the total mass of the mixture Quality is between 0 and 1 Where 0 corresponds to sat liquid and l to sat vapor The properties of the saturated liquid are the same whether it exists alone or in a mixture with saturated vapor vapor lintoral r Saturated VEIPUIquot Vat g S aturated V liquid vapor f Q mixture Saturated llqu1d A twophase system can be treated as a homogeneous mixture for convenience Int0t a inliquid Ignie39 POI ling PorT l L Quality is related to the horizontal distances on Pv and Tv diagrams Working With the Properties of Mixtures 1 Ill g Mayg l havg P or T P if T A Sat liquid Quahty 1s related Vg to the horizontal Sat liquid distances on Pv Vf and Tv diagrams The v value of a saturated liquid vapor mixture lies between I the vf and vg values at i gt the specified T or P lt Cu lt 0 S lt lt lt 0 lt N N ltV Superheated Vapor In the region to the right of the Compared to saturated vapor superheated vapor saturated vapor line and at is ChafaCtefiZCd by temperatures above the critical Lower pressures lt W at a given point temperature a substance eXists as superheated vapor In this region temperature and pressure are independent Higher internal energies Li 3 Mg at a given or properties Higher enthalpies 5 E IE at a given or Tit Higher tempreatures T gt 550 at a given P Higher specific vlumes U E Mg at a given 01 U at h TFC m3kg kJkg kJkg P 01 MP5 996150 Sat 16941 2505 6 2675 0 100 16959 25062 2675 150 1 25 27766 1560 72605 46872 54155 P 05 MP5 15153 gt Sat 037483 25607 2748 I 200 042503 26433 250 047443 2723 29610 Compressed Liquid The compressed liquid properties depend on temperature much more Higher pressures P PSat at a given T strongly than they do on pressure A E yfo T A more accurate relation for h E hf r l39 e r or Given P and T VEWT u A compressed liquid may be approximated as a saturated liquid at the given temperature yvuorh Lower ternpreatures T Sat at a given P Lower specific volumes U Uf at given P or T Lower internal energies at of at given P or T Lower enthalpies h hf at given P or T At a given P and T a pure substance Will 15183 eX1st as a 75 compressed liquid if T Tsar e P l J V L E f 750C u The Use of Reference States The values of a h and s cannot be measured directly and they are calculated from measurable properties using the relations between properties However those relations give the changes in properties not the values of properties at specified states Therefore we need to choose a convenient reference state and assign a value of zero for a convenient property or properties at that state The referance state for water is 0010C and for Rl34a is 400C in tables Some properties may have negative values as a result of the reference state chosen Sometimes different tables list different values for some properties at the same state as a result of using a different reference state However in thermodynamics we are concerned with the changes in properties and the reference state chosen is of no consequence in calculations Saturated water Ternperatu re table Speeifie uelume internal emerge E fllalp Errt39rqey m3ka ltJfltg ltJfltg ltJi ltg H Sat Sat Sat Set Set Sat Sat Sat Sat Terrie preea liquid uapr liquid Euap uapqr liquid Euap uapr liquid Euaq uapr T 3390 P5 kPa u 15 u ufg ug h mg a a 59 5g 01 01 1 00010 20000 0000 23000 231 00 0 1 2 50 2 5 0 0000 01550 1 550 5 8 25 000100 10103 21 23000 23818 21020 251001 2511 00103 8 011 00200 Saturated refrigerantBela Temperature table Specific irdlume internal energ Entrianlpy Entrdp m3lkg kJrkg liJlltg kJi kg Sat Sat Sat Sat Sat Sat Sat Sat Sat Temp preee liquid reaper liquid Errata vapor liquid Eileen trapdr liquid Evan vapor T 30 P3 We u 0 u Mfg ug ii mg g 3 354 3 ril0 5125 quot00quot05il quot36001 quotquot36 20140 2013 00quotquot 22506 22516 096060 quot06066 iyEi l l liil


Buy Material

Are you sure you want to buy this material for

25 Karma

Buy Material

BOOM! Enjoy Your Free Notes!

We've added these Notes to your profile, click here to view them now.


You're already Subscribed!

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

Why people love StudySoup

Steve Martinelli UC Los Angeles

"There's no way I would have passed my Organic Chemistry class this semester without the notes and study guides I got from StudySoup."

Jennifer McGill UCSF Med School

"Selling my MCAT study guides and notes has been a great source of side revenue while I'm in school. Some months I'm making over $500! Plus, it makes me happy knowing that I'm helping future med students with their MCAT."

Jim McGreen Ohio University

"Knowing I can count on the Elite Notetaker in my class allows me to focus on what the professor is saying instead of just scribbling notes the whole time and falling behind."


"Their 'Elite Notetakers' are making over $1,200/month in sales by creating high quality content that helps their classmates in a time of need."

Become an Elite Notetaker and start selling your notes online!

Refund Policy


All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email


StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here:

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to

Satisfaction Guarantee: If you’re not satisfied with your subscription, you can contact us for further help. Contact must be made within 3 business days of your subscription purchase and your refund request will be subject for review.

Please Note: Refunds can never be provided more than 30 days after the initial purchase date regardless of your activity on the site.