New User Special Price Expires in

Let's log you in.

Sign in with Facebook


Don't have a StudySoup account? Create one here!


Create a StudySoup account

Be part of our community, it's free to join!

Sign up with Facebook


Create your account
By creating an account you agree to StudySoup's terms and conditions and privacy policy

Already have a StudySoup account? Login here


by: Weston Batz
Weston Batz
GPA 3.79

J. Dozier

Almost Ready


These notes were just uploaded, and will be ready to view shortly.

Purchase these notes here, or revisit this page.

Either way, we'll remind you when they're ready :)

Preview These Notes for FREE

Get a free preview of these Notes, just enter your email below.

Unlock Preview
Unlock Preview

Preview these materials now for free

Why put in your email? Get access to more of this material and other relevant free materials for your school

View Preview

About this Document

J. Dozier
Class Notes
25 ?




Popular in Course

Popular in Environmental Science and Resource Management

This 42 page Class Notes was uploaded by Weston Batz on Thursday October 22, 2015. The Class Notes belongs to ESM 266 at University of California Santa Barbara taught by J. Dozier in Fall. Since its upload, it has received 56 views. For similar materials see /class/226961/esm-266-university-of-california-santa-barbara in Environmental Science and Resource Management at University of California Santa Barbara.

Similar to ESM 266 at UCSB

Popular in Environmental Science and Resource Management




Report this Material


What is Karma?


Karma is the currency of StudySoup.

You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 10/22/15
414162008 ESM 266 Multispectral remote sensing Radiation and remote 5en5ing Forexamp e w energy hemg sensed comesfromthe e s rammed by ammm pammes atthe suurce me Sun 7 prupagates mruugn me vacuum ufspace atme speed at n m e mteracts wnn Earth s atmusphere e mteractsw Earth s ma 7 mteracts w n tmusphere unce 39am and e naHy reaches uur sensm wneve n mtevads wun vanuus upma system mm M swuns m detectuvs scanenng page ui an 1 speed oflxght ms 1 wavelength m but we often Lee m 0 m u frequency Hz 5 ESM 266 Multispectral remote sensing 414162008 Terminology Reflectance terminology Radiant ux lt1 units W Irradiance ux density E units Wm 2 M y 7 menslonless called Exltance Mwhen away from surface 3133 izsri blaxecuonu xeflectanceclnstnbubon fundIOn BRDF NoteA can be functions ofwavelength fim akm um 5 and have units umal meme blaixecuonu reflectance tam BRF R Mia 51349 dimensionless axecuonaihmspheucal reflectance ox lust reflectance M I39fqu JS nticasddddq lfL 15 isotrong same for all 5 at then B because in isotropic Mle yfsm5 os d n Lx27rxl 2 m w hum Iyphnyahil F l ule 255 We 2 s nmtk 3 m gvav t u biaek 39 ham eimnipmn amcmn Ln a ammolnsm Illa a mum vm arzmxym u ESM 266 Multispectral remote sensing 414162008 Detector configurations breaking up the spectrum Characteristics of several sensors mm 22 E tuwi mm i m m an NemeutSpemvai Waveiength evcentutTutai Regmn Pang w nevgy nnz Neuumb e Landsat Thema cMapper bands and weiruses Band 2 Green I 52 7 u uu w 7 7 Watevtuvbidity di even e 7 sediment and puHutmn piumes 7 msmmmanun uv tamed ciassesut vegetatiun Band 3 Red El 637 El 69 pm 7 stvung chiuvuphyii absuvptmn veg u 7 uvbanvs vuvai aveas ESM 266 Multispectral remote sensing 414 162008 Bandwth 0767 0 90 pm 7 diWErEntVEgaatiDn variaies and Eunditiuns 7 dryvs mDiSt sent 7 uastat Wetiand swamps fiuuded areas Band5NiR2 1557175pm r ieafrttssue Water Euntem Suit mutsture r SHEIW VS Bi u discriminattun Band 6Thermai 104712 5 pm 7 neatmapping appiicatiuns uarse 7E5 Minn r radiant surface temperamre range 7 mm to mono Band 7NiR3 2 087 2 35 pm 7 apsurpttun band by hydruus minerais iay mica 7 iithuiugi mapping may zunes Landsat Thematic Mapper bands and their uses Landsat 7 orbits and acquisitions 4302005 Cunvener petween atnruw and tattun 500m and 1km 7 nttg modt5 gsfc nasa govaboutSgect cattoris th lobal coverage 12 days depending on latitude Pointing 55 from nadir 36 spectral bands with resolutions of 250m reaoiuttori dynamic range 7 scattering and abaorpttori bytne atmosphere in those an s 7 amountofenergy avatiabie oanos A combination of physical and sensor characteristics Sun oremttted in those ESM 266 Multispectral remote sensing 414 162008 AVIRIS Measurements in the Solar Re ected Spectrum JR vegetatlon rock spectra of mlxed plxels Snow vegetatio n ALmsnlm x n v Sumquot 0 mck m a 900 i an m 2 Ni t equal snowrvegrrock 00 quot1 113 r39 r Ii r a i 1 11 08 02 snow 01veg rock mu 3 m e 02 snow 05veg 03 rock i Ii l 871985 Landsat 5 TM bands 4 3 2 9111986 Glaciers feeding lost ice shelves accelerate up to 8X9 iceshelf buttressingquot Fires in southeastern US 4 Thermal bands 452000 Acquired 412003 MODIS s image of the day for 472003 VNIR bands 432000 htt llasterweb39 Inasa ov alle ESM 266 Multispectral remote sensing 414162008 Spectra 7 M6313 Iand quot Bands 250 500m resolution global daily coverage Simple snowndsnow alg rithrh forquot TM bands on MODIS m e39ga39ized di e eme Squot quotquot MODISSiena Nevada 41292000 Mfr bani ThresholdsforMODlS 1996 Landsat TM bands 4 32 P65 m Hedwiwwcr usgs gm75armshutsslnwnahleukumams 2211997 LandSaLTM ba d 4 21 R68 lmM50 39eearm nag39a gov 2202003 ESM 266 Multispectral remote sensing 414162008 Data fife o ftsvr e ensm39s Dgta rate swath mm x velnuty x bands x W5 H H M mamas Spam resnlutmn k m kmx msecxbandsx 1de my 1 sec egLandsatS k 185 kmgtlt74 EEX7bandsx ML My 30 sea a 9199115191 mummwnmmm WWW Dynamlc 39Mu1ti an g1g Imaging We 53mmquot SpectroRadiometer Launched un Terra 12191999 Exmmts angmar mfurmatmn 1n s1gna1 7 Surface ER 7 Pam 12mm thruugh atmusphere n avk Cunem 519nm Scene Bmmnes 39 Febyuaw a Mavch 299339 ESM 266 Multispectral remote sensing 7 4302008 Active and paSSive remote 5en5ing Passive uses natural energy either ESM 266 Active microwave re ected sunlight or emitted thermal or remote sensing microwave radiat39on Active sensor creates its own energy Transmitted toward Eari Interacts with atmosphere andor surface Re ects back toward sensor backscatter c Fre um V q 3quot whae c speed outqu Lidar em 8 x r humwaveiengt iaser iight e g s u an wn Txpicaiiv measured in OOXIO m 5 e recuran the iight backrscattereu frurn the terrain Dr 5 WHEd Hem HZ atmusphere Must We G WW Useful tnck GHZ1EI HZ 39 Sonar 30 e suunuwavesthruugh awatercuiumn 1GHz M e recuran the amuurt er energy backrscattered new the C Watercuiumn urthe buttum Uhusuai names are an amiacl n senan WWDYM Wavii ESM 266 Active microwave remote sensing 1 4302008 SIR AR ima e5 O Ronaoniay Brazgil Advantages ofradar All weather day or night 7 Some areas orEann are perslstently cloud covered Penetrates clouds vegetation dry soil dry April 10 1994 Sensitive to water content sur ce roughness a Can measure Waves ln Water nsitive to polarization and 39equenc Interferometry later using 2 receiving a Small amounts or Water affect slgrlal a Hard to separate rne volume response rrorn rne mmquot mm W 39 IZSr eZ39lill Qig ali rZile Sensitive to polarization and lrequency nearrange 7 Many chalces for lrlstrurnerlt expenslve to cover Theianmwmm u range or posslpllltles Eliznngleummamd We The math can be formldable lne lannes pplnl pnenaln llurnlnalee by lne pulse ntenergv lslne arr range Generally ubleclsthallrend en s1nllte n a eneman enneganal perpeneleulama lne range or luuk eneman are ennaneee rnuen rnerelnan inase apleels lnlne terraln inal le parallel mine luuk neman e Cnnsequenllvl llnear tealureslnal are rnpereemllale n a Eda lrnaee uslng pne lnnk erreapn mav appear pngnl in anmner rapar lmage win a emerenl innk eneapn ESM 266 Active microwave remote sensing 2 4302008 look direction Variaility with 393 39 39 x 5 39i1 X band HH polarization i look direction Depression angles and incidence angles Depression angle y between a horizontal plane extending out from the sensor and the electromagnetic pulse of energy from the antenna to a specific point on the ground Incidence angle 639 between the radar pulse and the normal to Earth s surface When surface is flat 6 900 7 lir39 firquot HH ImL 39 mvnlu If iil39qiiil39i LuriimTIg IslEmail LIILIng ElllLJ li li39 ldlll il i39 IIII H HillJ Iquot 39 lil I Li lh AJ In w 1 backseattered vertically polarized energy from earth is received by the antenna radar antenna transmits horizontally polarized energy toward the earth 1101110th IEmMml hawmm III r 139ii airliftWinn iml H39irlmmlil Ili lil lil I39Till r39 7 El 1ik llialln1u ri ml a wl 39n railrum pl L mum A IS reflected from surface 3 At this view angle horizontally polarized light is not So horizontal filter allows us to see the bottom a flgtlquotquot g 4 g L r r r 1393 Ka band HH polarization 7 A 39m l r quot 39Fa iii L v in 17quot x 39539 quotl l 39i l l q f V in 1 p Y a l39 J 339 Hi quotiquot l quotH I Ka band HV polarization N dar to each of the respective features in the scene But can also display in groundrange geometry so that features in the scene are in their proper planimetric X y positions Radar resolution has 2 dimensions range and azimuth ESM 266 Active microwave remote sensing 4302008 c pm enghxepee afhgbt as V casdepusaanange Slailerangc Display Range re501ution R versus GruundrRauge Display F WWW m u um m a tirplll39anmi WM B2 i ii l qii s r m 101 I quot r ili L1uMhiulgt 39quotCOIJ WVZ WU WW 4 a 00 01 73 inmmmw dagom r m b 7 Mm mm men mu i wimi wi J l39u39iri L 39 l 2 i m r A i ri B a1 Gmuildrrangt distance an man radar image 39um I m m uuh m Geometric macix distortions W my in all radar imagery Hm um um i L mm imizmwm i ii min eveiuve We Sumner m iime n is deiecied my me radar image Terrain that siupes tuwardthe radarwiii appear umpressed urforesho enedcumpared tn siupes awayfmm the radar Foreshortening factor F si 6704 where aslope angle toward radar 7 away ESM 266 Active microwave remote sensing 4302008 Layover Extreme ease er fureshunemng when incidence angie is iessthan sin e an ie Inward radar i e am 7 annut be currected 7 gm D be arefui in the 4a 6 untains Lhunusmcmm m 0 H703 r 39Whefisigpe awayimm redavissie pevihan Shadow depressiunangie ie 10y receiver 7 Paint erzere Duppier 7 A ertrain passes by its pitchwiii decrease iri frequency in prupumun in me distanceit isfmm me iistenerreeiver This principie is appiicabie tn aii harmum Wave mutiun inciuding me micruvvaves used iri radar systems ESM 266 Active microwave remote sensing 4302008 S th t39 tu d y e m aper re a at Creation ofSAR image ennerentngnt mdar mum i i f I etc image uf Dialect G a A 593512 R a 47 R R power received resolution cell Depends on terrain parameters like i power transmitted e geometry surface roughness morsture t and s antenna gain in direction oftarget t R range distance from transmitter to tatget 0 e e radar system parameters waveiengtn 7 baCkSCa are ofmget depression angie poianzatiom etc Awavelength a Space Smuuthh s 255m Emma l coior R h 2 mgh 4 4w we Green Lrband Hv awe Leband HH ESM 266 Active microwave remote sensing Motivation 39fnsnnnneftdnninatedr39ne basins snnnprnpertfesnear tr 0 r peakaeetrntrfatinn are sedt assess springandstnner rtrnnff Forecast nodefs refrnn estimates of the water stored in the snnn aefrtn determine the enntri trtinn nf snnnnefttnrtrnn t Current nperatinnaf runoff fnreeasts DWRerWS asstrnestatinna refatinns i betweens arse nint ThrsnnrfrrsstrppnnedbyNaraanstgradtrateSefrnnf f p p p r e neastrrenentsn snnnnater equivalent and runoff AnardNonnnnnnrnaandNASAfnnperatne enent NNGMGCSZA r fptrnitttnnff fnreeasts nsesnnr ennrse measurements taken neart erfnfeaehnnnth 39 Anafysis of snow entrrse measurements show nnn y e trends statinnarrt i jfnfa znfrfann5finddeereasingandinereasing e annat n SWEtrn step nrfentnn froth fatiturfeantf eferatinn PresentatinnbyffarfRinger Dd t Snow Covered Area t Frnnsateffftes MODIS 39 Dafnatsnnn r Landsat Evenr dansatgnn t Snow Water Equivalent tTefeneteredpiffnns Daifnrreasnrenrents Based nnnrnntfrfy nrinrpatredrnnnff vnfnnresweseteetenaset I nfyearsdnrnrgfrefanfsat Tanstnneafreenrdnt annnfthatenennrpasstnfn nftfrerangenfvanabfftynr runnffdnringfrefast eentnry i t H tiff t Anaveragefanrifynsesnag f tnrnaerefeetayear a quotstartrtnaennannnnatastattrnarannmrnn h 4092008 S rin Runoff for each Watershed Topographic Characteristics pi o Elevation SEE Si ithe 39 s American San Joaquin 0 American lower 39 I quot and Kern watersheds hat 0 Kern higher far riveyearst represent the We est ma Sum oprniMayJune unimpaired Flows newquot o Aspect 0 Kern south facing d ay an une unimpaired runoff nt ars have o Kernslightly steeper from MODIS for these years at 5am m remlutiun Landsat Thematic Mapper TM and ETM p of Atniosphere e ec ance for La ndsat LA quotgainquot QCAL quotofEet LA LMAXA e LMIN QCALMAXVQCALMIND QCALV QCALMIN LMINx Moderate Resolution Imaging Spectroradiometer MODIS 4092008 gissrgglatlve transfer code Physmal Background 0 Developed by the Laboratoire d39Optique 0 Fraction of photons from target reach satellite sensor Atmospherique The code permits calculations of o Typically 80 at o 85 pm and 50 at o 45pm nearsnadir downslooking aircraft 0 servationS o Photons lost though absorption and scattering elevated surfaces non lambertian surface conditions Absorption r absorbing gases Rayleigh scattering and aerosol scattering effects The spectral resolution is 25 nm o Primarily used for LUTs for MODIS Aemsols Kotchenovaetal 2006 small oratmospheric gasses Principally 03 H20 0 cm CH4 39 A I o Scattering Kotchenovaand Vennote 2007 39 quot 0 OK AB axmo er C 20 Surface Reflectance urface reflectance to TOA reflectance for Landsat Atmospheric Absorption Bands u Absorption by atmospneii c gases 0 H20 07 comm and N20 Solar Zenith and Elevation Snow Covered Area from I y Spectral Unmixing I214 16 16 Wavcl mg 39emw 0 Roberts et a1 1998 0 Painter et a1 2003 4092008 SWE from snow pilloWs San Joaquin 382004 Roughly Estimating SWE for a River Basin 0 Fassnacht etal 2003 o Hypsometric Interpolation with inverse weighted distance interpolation of the residuals o Spreads snow into the ocean o Blended SWE o Multiply by SCA SCA and Elevation Results from 2004 near peak SWE Snow Covered Area totals Landsat w l r quotm l gm MODlS pl lll i w quotwmn mi am 39 Remote Serf mg eV al f Source f r La 3 Scale Environmental Information ozier Emphass undev and the Principies n1 enquiring and interpreting use tram saieiiiieuaseu ienme sensing sysens 9mm Misti Enummm 3312008 Ob5ervation5 from Space Sunsynchronous polar orbits r Giobai coverages fixed crossing repeat sampiing r Typicai aititude 5004 500 km Lowinclination nonSunsynchronous orbits r Tropics mideiatitudes varying sampiing r Typicai aititude 20072000 km Geostationary orbits r Regionaiviews of Mi Earth disk continuous cove rage 7 OverEquatoroniy aititude 35000 km In situ atmos heric chemistr erosols heat and vapor ux Sparse coverage Ground Repeat or continuous sampling Sparse coverage clouds and es requeriny Tnusi 00m me intensity energy perunirrimei and ine frequency areinissian are nign Since energy E traveisthrough a vacuum ata constant speed c ine speed or iight irine frequency v or panicie Wave emission is High tne Waveiengtn A is short V Pianck siaw energypeipnomn A h is Pianck s constant Fm ieinme sensi gi We usuaiiv Wavelmglh a rim nannm elev i 39gm in measuie waveiengin emem in in mwave i iquot i mm m min m caegsgedmmg uki minim Mei shim s nivnei and i sha evwaveienv h Ha evabied ESM 266 yertne sdnaee dta s nere p at a distanee uf Earth s radius AHF Z 5d energy at Eartn is W E 5 E 47er P m2 At upper edge at Earth s atrnespnere SniE So 137D W rn 2 tne solar onstant39 Planck equation a RadiancEiWni ztun sr for Sun and Earth sdn 53mm Ea 2am Smled tar Eannsdn Disanae igMbulb mum Dd vyaveienetni um incoming Energy sun rquot an an Saiollllu Muaswrimr m 6 sani any smirwt 3 ism 4 Winn by a i n axe Arnaspranannwnia a s yiim tin fn 5 quot1 e o i L r it e 1 is m anuidngili iiirnt NASA Goddard Institute for Space Studies mm WWngss nasa guv Wavelengths from 0 to Earth or its atmosphere Wavelengths from 3 m to 30 cm Active Source of energy is part ofthe system Radar Wavelengths from mm 4 t m Lidar Typically around 1 gm e Gedg 2u2A Remote sensing and enyirdnrnental upties e Gedg m Digital teennigdes in rerndte sensin ge ennan lmage vestuvatiun ina classltlcatlun Gedg 238 Remutesensl 7 Gedg 2m oeean upties eernenti lmagetvansiuvmatlun and ed rerndte sensing e rernute sensi rig ng er tne atrndspnere ESM 266 3312008 Format and grading Some current mi55ion5 Lemuvesmme aweek NOAAAVHR R SeaWwFS 7 Emmeasewmenumandin evmscussmn 5 u b aceancmmmmevew Lab mm 3 Wk Kw mammmswu vvadudnN 7 Sum ENV enwnnmem va siahzmg Wages BumanDLUmavedsp ay anvuave IEMMUvupma RaWaH WW5 Measuvmg Mwssmn 39 M 7 vemnamnvadavc aud O hevnpunns eCng mnn mm we NE AICGWS MATLAE 57Ewebhumekaassgnmen sn 7 m w aanHnPaws mm mm can Vuuv men A a c mm M 7 an Mk mmvmuauymm paws Fwa mm w 7 msmucmwmmw 7 nmvmuau mmquot 7 3mmemsumwmnsmm VHRRNOAA s and Operational 7 weather l39 sensor 5293 ZEl b 181696 l u 13 Sep 199 ESM 266 3312008 39SEaWiF S39image global chlerophyll Iuly 1997 Sept 1998 Concept of am imaging spectrometer AVIHIS CONCEPT Em mm mm m A commuoussczcmuu mn sumcz m momma 3 mspecmumcss YAKEN swuLYANEousu 224 spectral bands 20 m spatial resolution when flying at 11 km Mlnrcll mm 1079 I snuu lww wuou zeaw iouo wmumn an ESM 266 4 3312008 Atmospheric N20 from GOM39E on ERSl Atmospheric N02 Sam 15 1997 lw 7 interquot inmon39from SIR CZXSAR Altyn Tagh fa G full resolution image is available from the JPL SRTM image Website NH 1960 1972 Film transferred to USGSEROS and National Archives Digital browse images The fact that intelligence satellite data are used for mapping charting and geodesy eg Digital Elevation Models Search for CORONA example from 1969 ESM 266 3312008 EOS7the Earth Observing SyStem TRMM nngrtrrnrn gsrc nasa guy auncn Nuvember 18 1997 7Precrprramn radarrnr ers CERES Us Landsat 7 nng rranesa1 gsrc nasa gw rauncn Aer 15 1999 a spectrar bands 156D rn resurutrun 193 km swam rauncn December my 1999 ER CERES MWSR Moors MOPH T AcRrMsAT nngracnrn gr nasa geyr rauncn December 2u r999 40an smarmamancE JASONJ nugrmgexwww gr nasa guyasum rauncn Decemberl 2mm rSearsuNace aurrnerer DORWS one raserreuurerrecmr EOS cont Aqua an rmww agua nasa geyr rauncn Marcn 24 2mm 7 RS AMSU AMSRVE CERES HSB MOD S rcesat nag Urcesat gsrc nasa geyo rauncn January 12 2mm 7 geoscrence raserartrrneter Aura nag raura gsrc nasa geyr raunanune 2mm 7 H RDLS MLS OML TES EosDrs mg sgsusurr gsrc nasa guyN ew EosDrs Wm uumcane Michele m no 2nn1 Mnulh m Vanglze Sq 15 znnn hght 7 rnteracts Wrm Earth s atmusphere 7 rnteracts wrm Earth s surrace 7 rnteracts Wrm Earth s atmusphere ence agarn and 7 nnauy reacnes uur sensrng system wrrerenrmerac1s wrm yarruus umrcar systems mers emmsmns m detectms sca evmg Examp es 7 Peak er Sun s ramatrun 2997mm n 5 pm 7 Peak er Ear h a ramatrun 2997299 m pm 7 Energy at Sun Enurmuus 6 4x1 n7 Wm reduced m mu WW7 by Eannsun mstance 7 An enrect a 299 K ernrts a9n Wm z ESM 266 5142008 Water balance for a landscape ESM 266 Vegetationi processes biomass Puma P Evaputvansprvatrun ET srepe vratertanre Ourck uw remes tne ranescape wnnrrr a rewneurs e1 varmaH Deraree mm represents shm erarrraee 1mm suH water arru muundvmev Advectrunc Fi For some At day montn on a unrt area of rand ne Contrnurty Equatron rs neeuemweuereeerewes rndudrng any factor such as vegetatron type that mrgnt affect rt ETrs extremery drtncurt to measure drrectry tor rong per as so We usuaHy estrmate rt trom tne energy barance rate of expendrture of ratent neat Pnase cnange to vapor requrres an rnput of 2 5x105 Jkg SWraJ rmTHLG m mm Dquot PM Hr sensrere neat transter Temperature vapor pressure and serr merrsture mmrmsm ng Amenquot determrne new Rmrs pamtruned between and L ereaureaueresm 12 mama re tne magmtude errtne temperature graurert vs the grassranuu 241 6 m Emma mm m vapurpressure graurent r uewnwaru rntrareu yadratrun uepenus un temperaturerwatervaper and ereuus L surtaee temperature ESM 266 Vegetation processes biomass l 5142008 Convert latent heat flux into mass flux of Latent neat exchange Per unt area converts a vntume ntwaler 7 thevntume ntwalewerunn 7 mummted bv tne tatent neat End point5 for day or month 60 Waterless Earth L 0 so RM H Midocean or midCongo H 0 so RM L Rm 501 9 compares to c entmts sensttate neat 7 exchange quot39ZZZZS s and E T annenetantnnns m tens e andbvthe dens vntwaler nnen eenvenstne ness net ant see tn e wttne nemnteee usng Equattnns tn tne tnrm ntSeHers RMHLGexpandsto w sttn amp 55739 T 7T i e Tye M T t aeanann 1 y 1 c G r sunac r t nee t 5 sun mutsmre avattabthw Yuncttun y Inscm mnsa a em equthbnumvapurpressure at TX suggest 5 5 53 9 EE 5 ts a mutsture avattabmtymnctmn t wnen SD aturattun vapurpressure at T5 WA il thEtrEquaImnA 5 HM wttttngputnt eq 5 suggest burn an 9 T979 aerodynamtcreststance and a surrace reststanc WWquot m 39rmaw tut Imtm wank n nn watnn ntnnggt ESM 266 Vegetation processes biomass 5142008 MODIS Evagotransgiration Project Why estimate evapotranspiration by MOD16 satellite Scare mm mm appxaaches m ET Kenlo N ishida Cm scum dzvelnpment msc Univ Mammal Umv afTsukuba Obsexwuan 5mm RS Txme cavexage am Fan Steve Running and Rama N emani ijectdmctms me u Mnmam Joe Glassy t V 5 z swmwmm um Lays Inc Cmm a kmmgm ea Outline of the Project MODISET Model Landscape k Actual landscape mm mum farm grassland mm at Vimph cahun ETfgEng 14 ET m Let gages ie QHL me Cugu ma Scahngupm Hydralagv usng P em a 5 my EF fwgi 1ampng 1 71 JEFW Q Q rm mus Fracuunufbaresml 1mgmg Fracuunufvegetauun f g ESM 266 Vegetation processes biomass 3 5142008 How do we get it Estimating EFWg 1 Concept Tempua xe anvegztman 5 Central Enncept Evapnratmn 39nm Vegetahnntxanspxrahnn15 Jncamxngsalarnduuan mm mnstly nntxnlled by stnmata npemng cannpy resistance Asmngcmnplemmuryxelmmslmp graham m yum myymm we m g EF QM EF 1 QM EF C mm m mg mg mg n Q I Q Aemdynamlc mum mu 5 Dmvedfmmsatzlme n Emma39zdugzmehcally Campynxum Esumaung HEW 2 Canopy Reslstance Model E Stima ng Rm 12 12VPD3PA R W Mum 1mmquot I Summon Hum Smlwatex i 1739 f3PARrdm CW W r mm cwva Prototype L iii w ESM 266 Vegetation processes biomass 4 5282008 ESM Z66 Atmospheric Correction Amosphe c absurp nn and scattering 740m rrum Sun scattered Ess ut absumed by Watervapur EspemaHy at 1 4 arm a w and by cruuus Myddemfrared rs m frum Sun and Earth and thermal rnrrareaps m frum Earth absumed by uuds Water vapur arbun muxrde methane uzune and umer greenhuuse gases 7 Sume Wmduws 6 54mm and man am when nu arms mm 7 g xle xmexk m m mfgua K k W MMMWW mmmwcmream ALEWMUM mm are bumsmmmmemum mammm r mimmmwkmmm 39 WWW WWW r mmmmmupmmmw smegmaMWVMWMH Wmm Magmmmnmm 01 ESM 266 Atmospheric correction Mie theory r p vadws Famem sceneved exemncnem x wave ength x 2m M M2 5 22 pavememr 5 WMQ K m m KR M mak ehacwemdex num 2 9 mm may mm we 1 mmvmsmbe Mje Series Key Facts Numbeyu evms Nu nuvma cunvevgence evms muve m 255 same sue nu neav and mquot mash u 22ch Papwdvanatmnmxbecause EesseHundmns usmHa e muve m ease beta edenummatuvsuwubn u en appvuach 12m M12 Antensmes vs ang s WWW Mle exunmion quot2h mm 533 enimency 1 z mpme Mb lawman25 5mm osc munn s me evence hemequot JM m d reclvansmxss on 2 m anumalnus amvmonv a n We u mm w my EmMIMVmmswm unannw de aw WWW 3mm pvesems We bESHace an 012 pvub em smce Omws easy Huwtu megva e we m m mhev 2 quammeswas have veaHy su ved Mm A we m w so So in an rnnnnut WWW WWW NiagataRn athW you w 01M PM 54 my A W W WWW m 1 mm mm an umm Mamme and n imi y nui ifmmm snce h mm ya we an a quot numenm msgvannns 39 u m Eesse mndmns t mm quaH zwmvmsmbe ESM 266 Atmospheric correction 5052008 Landsat overlaid on topography from SRTM 7 Malaspina Glacier Alaska ESM 266 Interferometry and laser altimetry httg WW pl nasa guvsnmalaska htm SlRCXSAR ew two 10day missions April and October 1994 Lband C band and Xband Instrument was then converted to an interferometer C and x band on y 2quot receiving antenna added SRTM ew a 10day mission in February 2000 Collected data on most of the land surface between 60 Ni 54 s Coverage maps globe39 gro39ection Data product galleu Can make use of this information with 2 receiving antennas up manyquot quulvl lwlrulwn When we measure the radar pulse consider not just the amplitude but the phase too distance Phase cycles inlezivausrgemc wavelen 5 1 u unnsm Wave nrauh ESM 266 Active microwave remote sensing 5052008 a interferometric phase 6 incidence angle a antenna angle B baseline length A wavelength p range From interferometry Ap 1 pAp Links to movies B M 2 p 7 2ApiBsina7 11 h 7 3 cos a h 19 2211 give H1923m instead of H175m Same vehicle different days slightly different in the previous example POSltlon This also allows us to detect subtle changes in surface elevation between the passes sunr llNimnlyms Lbmxl mum Inlnllmumnlu Nonlmm Pamaoman ltclitld topography USGS gallery USGS Seamless Distribution System for SRTM Ice velocity lm VE OEW ESM 266 Active microwave remote sensing 2 4212008 ESM 266 Thermal infrared remote sensing VVikipEdia 7 infrared AVHRR NOAA s operational meteorological sensor and follow link to DATAgtAVHRR Images e Temperature and humidity Trace gas concentrations Radiation balance Emissivity wmmm HRVYd Wm A ssr 5 GOAL anai and advectwe mmpnnems at upper ocean heat baiance Radiation from a hotter body peaks at a 39939 m v551 shorterwavelength than from a cooler body wz k max mm mm mm mm m renown W PM mm St a my m MGDR gimme extra aiate may ivaEgate P ESM 266 Infrared remote sensing Gov39emihg equation Plancks equalion L 7 21192 Where x 7 kc spectral curves on 7 5 x 39 7 next slide A e 71 CAT m Stf 7B It I 0 man E7rJL1dlc7T4 equat1on 0 t 300x108ms 1 h Planck s constant 663gtlt10 34Js k Boltzmann sconstanl 138X103923J39K391 U Stefan13011231121111 constant 567x110 8Wm A 4212008 DefinitionOf regions 1 quur 1 quus 1 quus 1 qum radlance 1 union 1 umz 1uEvu1 115am Thermall wa39velenmh W3 39 l hugMmmlgenteccom nstrumenta un htm 812 pm Thermal IR spatial resolution for measuIing temper ature Atmospheiic window Peak of energy emitted from Earth Most atcurate temper atuIes Cloud cover Less radiation in daytime Cloud cover Coarser spatial resolution than MWIR ption at same frequency and angle 0 Emissivity Reflectance Transmittance all functions of Wavelength and angle ESM 266 Infrared remote sensing SOTB OrT 21102 hc hck 39i ange 1 8 he 21102 4212008 Relationship between T and TB Alspljf wjndnwmmds am osphmc correction for surface temperature measurement Waterrvapurab urptiun m 1942 9m Wmde is greater man in 35 9m WmdDW z r r Greaterd ievence between 756 a m and mm m mphes mare Watervapuv x e Enames estimate at atmnsphen eemnbmmn and thereby m mm mm Arum Wm vu 4 r 7mi55ion5 V in mu n w with IR capability TRMM r CERES Lairdsa iaunched Apn 1999 TMhas GUN bandat 1D 5712 5 Wu EOS Terra aunched December 1999 r OER Di OP W EOSAgua aunched May 2992 7 MRS CERES MOD S EOSAura aunchedJuiyZDDA r HiRDLS TE S dvariced SpaceborneThermal Emi55ion and Reflection Radiometer 14 bands 1590 m in VIS NIR SWIR Shnnwnve mum Thermal mm Manna Loaimages ESM 266 Infrared remote sensing 3 4212008 MODISiM d t R l t39 I 39 ASTER spectral bands on model atmosphere SpedroradiSmgzre eso u Ion magmg AS l l jRapccu39alBantls 39 36 bands 1 in SWIR 6 in mid IR 10 in rt ion ttquot Militia i initial Hull39s thermal IR l Measurements of a n A m H Surfacecloud temperature Atmospheric temperature Cirrus clouds and water vapor Ozone Cloud top altitude iAdvanced Infrared Sounder 7HighgtRESOlutlon Dynamlc Lunb Sounder 2400 bands in IR 3715 pm and 4 bands Sound uppertroposphere stratosphere in visible 0410 pm and mesosphere fortemperature and a Absorption signature around 42 pm and 15 variety Of gases pm 002 and 63 tun H20 enables 03 H20 CH4 N20 N02 HNOS N205 CFC temperature and humidity sounding to 1 km 11 CFC 12 CIONO2 Ve 39a39 res 39 39 21 bands from 612 pm to 1776 pm Spatla resolution ls 135 km Complemented by microwave sounders to deal with clouds iTropospheric Emission Spectrometer Geostationary Operational Environmental Satellites Highresolution infraredimaging Fourier t transform spec rometer WW5 Wider POES PolarOrbiting Environmental Satellites le AVHRR SpeCtral COVeFaQe 0f 32 to 154 m at a 7 Two satellites provlde coverage With maximum delav or 6 hours Spedral reSOIUtlon 0f 0025 0m391 r LatestlsNOAIHS launched Mav13l998 Linewidthlimited discrimination of most NPOESS National PolarOrbiting Environmental Satellite radiativer active gases in the Earth39s lower SysteM atmosphere 7 dolrlt NOAANASADoD rnissioh 7 Launch no earlier than 20M 7 imaging microwave and sounding instrurnents ESM 266 Infrared remote sensing 4212008 o Land surfacetemperat ure from MODIS Go to the MODIS Land Global Browse Page Select the MOD11MYD11 checkbox Surface Temperature Enter date range Select satellite Terra andor Aqua Select Collection 5 is most recent Active fire detection MODIS Fire and Thermal Anomaly Website Click on Quality Assurance to get the browse tool intuitive hammerswam one can go to Zhengming Wan s ATBD for land surface temgerature The algorithm uses MODIS pands 31 1078 1128pm and 32 11 771227pm 17 A r r TSC AA2 A3 famp s s 2 17 A TiT MB 5 3232 3 s 3 52 Where Inf brightness temperatures in bands 3 132 53 l 532 F and A5 531 7 32 ABC coef cients given by multidimensional looknp tab1es they depend on angle Sand Samle 1 r Bullets Beach Goleta an t l l t l l l t l Emissivity s 7 3 910111213 Wavelmgth meiczometaz ESM 266 Infrared remote sensing 4232008 quotHyper5pectralquot g a terrible term Imaging spectrometry imaging spectroscopy 7 hyperspectral too many excesswe j 1005 0 ESM 266 Hyperspectral Dam remOte sensmg r Ultraspectral 10005 ofbands Generally we m an measuring the re ected or emitted radiation at a ne enough spectral resolution to identify materials quotum Rngevciam Sgeclmscngy w Racks and Minerals Mumsporlrulmlvmv m mm quotum Rngevc an Sgeclmscngy w Racks and Minerals f EL ariltAN l 2 Mmmw W ESM 266 Hyperspectral remote sensing 4232008 39Nw lg h x GFre fi mi Eem l x Mietheory based on Nand x21rr1 single scanering albedo g asym melry parameter QM extinction e 39Iciency ESM 266 Hyperspectral remote sensing 4232008 Cu ve ti39ohh jakoa39ch in em SatEME ramance 5 Ermr Surface re ectance gt5 Narrowband arbedo 510 Broadband arbedo 540 a hedn r in W ll l n W S W S Ze iM e S uE d vs fe r seh ed gji ai i zs Av R s mm was no mac va bands 21 Mav 1597 v3 3 05 Mav 1597 ESM 266 Hyperspectral remote sensing 3 4232008 Grain size x ieToko pahB sin Kamah River drainage Sierra Nevada Abmrp an ay three p as es bf Wafef 21 Mav 1 997 I I n5 Mav 1997 We Show AV R S mage pyempname hqmdwalev r vapuv hquwi ADB 13242259 Watev a mm 5 mm paw me EGR Gmenet a mag Warning quotm 39absmp mquot ESM 266 Hyperspectral remote sensing 4 4232008 Causes of absorption Electronic Isolated atoms and ions have discrete energy states change from one energy state to a higher one Abrational Bonds in crystals are like springs can vibrate Rotational and translational Limited in solids occurs in liquids and gases Absorption ofphotons ofa speci c wavelength causes a Frequency depends on strength of bonds and mass of lecules Reflectance spectra showing vibrational bands 39ANCE em 1 l vgggmm W l Dry Vegetation AVIHIS CONCEPT mu 5mm as 7 us A cominqu snzcmuu rm IS uszn rc msz ms sunms mu AmosvHEHE mspsmmmsss YAKEN slMquANsousu LantOAV l8 ome a e ESM 266 Hyperspectral remote sensing 4232008 Mineral map showing and mine drainage Most pixels are mixtures of different components Linearmixture 7 Materiais are upticaiiy separatism su nu muitipie scattering n tween umpunents intimate mixture 7 Direrent materiais are in intimate cuntact e g minerais in a ruck su muitipie scattering uncurs Coatings 7 One matenai uats anmner earn mating is a scatteringtransmitting iayer Moiecuiarmmure r Liquidmum ur mumsum m mm m upquot Guudrmn amp Us1in UC Dans 224 bands 0425pm ies on ER 2 or low altitude Twin Otter O1 r oiar arm as incimauon ying information WLandsat 7 1 minute apart Technology demonstration mission includes Spectra range D 43 V 2 4 W m m handwmmg Hyperion instrument ma harm 220 bands 0425pm 75x100km swath 3mm Spar ai rega uuon ilbitquantizatmn ESM 266 Hyperspectral remote sensing 6


Buy Material

Are you sure you want to buy this material for

25 Karma

Buy Material

BOOM! Enjoy Your Free Notes!

We've added these Notes to your profile, click here to view them now.


You're already Subscribed!

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

Why people love StudySoup

Jim McGreen Ohio University

"Knowing I can count on the Elite Notetaker in my class allows me to focus on what the professor is saying instead of just scribbling notes the whole time and falling behind."

Janice Dongeun University of Washington

"I used the money I made selling my notes & study guides to pay for spring break in Olympia, Washington...which was Sweet!"

Bentley McCaw University of Florida

"I was shooting for a perfect 4.0 GPA this semester. Having StudySoup as a study aid was critical to helping me achieve my goal...and I nailed it!"


"Their 'Elite Notetakers' are making over $1,200/month in sales by creating high quality content that helps their classmates in a time of need."

Become an Elite Notetaker and start selling your notes online!

Refund Policy


All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email


StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here:

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to

Satisfaction Guarantee: If you’re not satisfied with your subscription, you can contact us for further help. Contact must be made within 3 business days of your subscription purchase and your refund request will be subject for review.

Please Note: Refunds can never be provided more than 30 days after the initial purchase date regardless of your activity on the site.