New User Special Price Expires in

Let's log you in.

Sign in with Facebook


Don't have a StudySoup account? Create one here!


Create a StudySoup account

Be part of our community, it's free to join!

Sign up with Facebook


Create your account
By creating an account you agree to StudySoup's terms and conditions and privacy policy

Already have a StudySoup account? Login here

Chapter 13 Notes

by: MBattito

Chapter 13 Notes BIOL 3160

GPA 3.5

Preview These Notes for FREE

Get a free preview of these Notes, just enter your email below.

Unlock Preview
Unlock Preview

Preview these materials now for free

Why put in your email? Get access to more of this material and other relevant free materials for your school

View Preview

About this Document

Chapter 13 Notes from lecture, power point and textbook
Human Physiology
Dr. Tamara McNutt-Scott
Class Notes
25 ?




Popular in Human Physiology

Popular in Biological Sciences

This 9 page Class Notes was uploaded by MBattito on Thursday March 24, 2016. The Class Notes belongs to BIOL 3160 at Clemson University taught by Dr. Tamara McNutt-Scott in Fall 2015. Since its upload, it has received 43 views. For similar materials see Human Physiology in Biological Sciences at Clemson University.


Reviews for Chapter 13 Notes


Report this Material


What is Karma?


Karma is the currency of StudySoup.

You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 03/24/16
Chapter  13:  Blood,  Heart  and  Circulation     • Circulatory  System   o Functional  term   o Prefer  the  use  of  cardiovascular  system   • Blood   o Function  divided  into  3  broad  areas:   § Transportation  –  moving  oxygen  and  wastes,  hormones,   clotting  factors,  etc.   § Regulation  –  body  temperature  for  example   § Protection  –  antibodies     Composition  of  Blood:     • Blood  is  the  only  fluid  tissue  of  the  human  body   • Arterial  Blood:  blood  leaving  the  heart   o Bright  red  because  of  high  oxyhemoglobin  concentration   • Venous  Blood:  blood  returning  to  the  heart   o Darker  red  because  of  less  oxygen   • Plasma:  fluid  portion   o Liquid  of  water  and  dissolved  solutes,  plus  varied  organic  molecules   à  sodium  makes  up  the  largest  percentage   o 55%  of  blood  composition   • Cellular  component:  (Table  13.2)   o Suspended  in  plasma   o 45%  of  blood  composition     o Platelets:  also  called  thrombocytes   § Smallest  of  formed  elements  that  are  actually  fragments  of   large  cells  found  in  bone  marrow   § Lack  nuclei  but  are  capable  of  movement  through  the   capillaries     § Survive  for  5-­‐9  days  before  being  destroyed  by  liver  and  spleen   § Important  in  blood  clotting   § Release  serotonin  (causes  vasoconstriction)  and  growth   factors  (maintain  integrity  of  blood  vessel)   o Erythrocyte   § Function  to  transport  oxygen  and  carbon  dioxide   § Lack  nuclei  and  mitochondria   § Circulating  life  span  of  about  120  days   § Contain  280  million  hemoglobin  à  give  blood  its  red  color   • Hemoglobin  molecule  =  4  globin  protein  chains  bound   to  one  heme  molecule  –  the  iron  group  in  heme  is  able   to  combine  with  oxygen  in  the  lungs  an  release  it  in  the   tissues   § Transferrin:  protein  that  carries  iron  in  the  blood  tot  the  bone   marrow     § The  iron  is  recycled  from  old  red  blood  cells  by  phagocytes  in   the  liver  and  spleen     o Leukocyte:   § Different  from  erythrocytes  because  they  have  nuclei  and   mitochondria  and  can  move  through  capillary  walls   • Diapedesis  or  Extravasation:  movement  of  leukocytes   through  capillary  walls  to  reach  sites  of  infection   • Aids  in  defense  against  infections  by  microorganisms     § Granulocytes:  survive  12  hours-­‐3  days   • Neutrophils:   o 2-­‐5  lobes   o 54-­‐62%  of  WBC   o Phagocytic   • Eosinophil:   o Bilobed   o 1-­‐3%  of  WBC   o Detoxify  foreign  substances,  secrete  enzymes   that  dissolve  clots,  fight  parasitic  infection   • Basophil:   o >1%  of  WBC   o Release  anticoagulant  heparin   § Agranulocytes:  Survive  100-­‐300  days   • Monocytes:   o 3-­‐9%  of  WBC   o phagocytic   • Lymphocytes:   o Nucleus  nearly  fits  cell   o 25-­‐33%  of  WBC   o provides  specific  immune  response  (includes   antibodies)     Hematopoiesis   • Occurs  in  red  bone  barrow   • Influence  by  cytokines  and  other  regulatory  molecules   o Thrombopoietin  and  erythropoietin  regulate  the  pathway  of  what  the   stem  cells  produce   • Hemacytoblast:  pluripotent  hematopoietic  stem  cell   o Forms  lymphoid  stem  cell  à  produces  lymphocyte   o Forms  myeloid  stem  cellà  forms  erythropoietin  and  interleukins,   CSFs   § Erythropoietin  produces  erythrocytes,  neutrophil  and   monocyte   § Interleukins  produce  eosinophil,  basophil  and  megakaryocyte                                         Erythrocytes:  Red  Blood  Cells   • Supply  of  iron,  vitamin  B12  and  folic  acid  needed  for  proper  red  blood  cell   production   • Regulated  by  EPO   o Produced  by  kidney   o Looks  at  oxygen  carrying  capacity  (oxygen  level)  –  if  oxygen  level  is   too  low  à  makes  more  erythrocytes   • Lover,  spleen  and  bone  marrow  remove  aged  cells,  recycle  iron  and  globin   • Erythropoiesis  is  a  very  active  process  –  requires  iron  and  myoglobin   • Ferroportin  channels  in  enterocytes  –  regulate  iron  concentration  levels   • Transferrin  (plasma  protein)  in  plasma     • Role  of  HEPCIDIN  (poly  peptide  hormone  produced  by  the  liver)   o Promotes  cellular  storage  of  iron  and  lower  blood  iron  concentration,   does  so  by  working  through  Ferroportin  channels   • Blood  type  result  of  distinguishing  antigens  displayed  on  cell  surface   o Genetically  determined   o Immune  system  exhibits  tolerance  to  body’s  red  blood  cells   • Longevity  ~  120  days   Blood  Clotting:   • Homeostasis:  cessation  of  bleeding   • Effective  in  dealing  with  injury  to  small  vessels  but  little  help  for  middle  to   large  vessels   • Observe  3  separate  but  overlapping  homeostatic  mechanisms   o Vascular  spasm   o Formation  of  platelet  plug   o Clot  forming   Vascular  Phase:   • Function:  close  off  vessels,  reduce  blood  loss  and  allow  time  for  other   processes  to  stop  bleeding  in  larger  vessels   • Vasocontrictive  event:  immediate  response  to  injury   o Occurs  in  smooth  muscle  of  vessel  walls  –  inherent  in  smooth  muscle   itself   • Vascular  spasm:  occurs  in  vascular  wall   o Makes  the  lumen  smaller  by  contracting  to  reduce  blood  flow/loss   and  gives  time  for  other  process   Platelet  Phase:   • Platelet  Plug:   o Positive  feedback  event   o Organizes  for  blood  clot  formation   o Platelets  activate  clotting  factors   o Temporary  fix  –  must  be  stabilized   • Platelets  repelled  from  each  other  and  endothelium   • Prostacyclins/Prostaglandins  and  NO  –  vasodilators  and  inhibit  platelet   aggregation   • CD39:  enzyme  that  breaks  down  ADP  à  promotes  platelet  aggregation   • Degranulate   • Platelet  release  reaction   o Exposure  of  collagen  and  VWF  activate  platelets   o More  platelets  activated  and  recruited   Coagulation  Phase:   • Blood  Clot  –  initiating  the  process  of  transforming  blood  from  a  liquid  to  a  gel   • Represents  the  transformation  of  blood  from  a  liquid  to  a  gel  that  results  in   the  formation  of  a  clot   • Conversion  of  fibrinogen  (soluble  plasma  protein)  into  fibrin  (insoluble   fibrous  protein)   o Fibrin  stabilizes  the  clot   Clotting  Pathways   • Extrinsic  Pathway:   o Chemical  released  by  damaged  tissue  –  tissue  thromboplastin   o Activator  tissue  factor  activates  VII  à  activates  X  à  activates   common  pathway   § VII  complex:  VII,  tissue  factor,  calcium,  phospholipids  à   require  calcium  and  phospholipids  from  platelets   • Intrinsic  Pathway   o Contact  pathway:  initiated  by  negatively  charged  structures  –   collagen,  phosphates  and  NETS   o Initial  activation  factors  activate  XII  à  activates  XI  à  activates  IX   (forms  VIII  complex)à  activates  X  à  activates  common  pathway   § VIII  complex:  VII,  activated  IX,  calcium  and  phospholipids  from   platelets)   • Common  Pathway   o Activate  factor  10:  Stewart  Brower  factor   o Activated  X  forms  V  complex   § V  complex:  V,  X  activated,  calcium  and  phospholipids  (from   platelets)   o Activate  factor  10  activates  thrombin  from  prothrombin  à  thrombin   activates  fibrinogen  into  fibrin  which  is  polymerized  by  factor  XIII  à   blood  clot  is  formed   • Intrinsic  is  slower  than  Extrinsic   • Many  clotting  factors  are  synthesized  in  the  liver   o Deficiency  of  vitamin  K  can  lead  to  clotting  problems  and  dysfunction   in  the  liver   • Clot  retraction:  contraction  within  platelet  mass  to  form  more  compact  and   effective  plug  –  serum  (plasma-­‐lacking  clotting  factor)     • Vitamin  K:  important  in  the  synthesis  of  the  clotting  factor  produced  in  the   liver   o Problems  in  people  that  take  a  lot  of  antibiotics  because  it  kills  the   bacteria  hat  provides  vitamin  K  à  leads  to  problems  in  clotting   Clot  Dissolution   • Plasminogen  activators  turns  plasminogen  into  plasmin  à  produces  soluble   fibrin  fragments  from  fibrin  (breaks  down  some  of  the  clot)   o Kallikrein:  main  plasminogen  activator  in  humans  –  tears  down  the   clot   • 3  mechanisms  that  oppose  clot  formation:   o Tissue  factor  pathway  inhibitor  –  TFPI     § From  endothelium;  blocks  clotting   o Thrombomodulin:   § Receptor  for  thrombin  –  becomes  inactive  upon  binding   protein  C  (natural  anticoagulant)  activator   o Antithrombin  III:   § Inactivates  thrombin  and  other  clotting  factors   • Function:  limit  clot  formation  so  that  the  clot  does  not  get  too  large  –  does   not  completely  inhibit   • Balance  between  clot  formation  and  elements  that  are  depressing  the   clotting  process   Circulation  Circuits  and  the  Heart:     • Pulmonary:  out  of  the  right  side  of  the  heart  à  lungs  à  drop  CO2  and  add  O2   à  back  to  the  left  side  of  the  heart  through  the  aorta   • Systematic:  pick  up  CO2  out  of  the  left  side  of  the  heart  and  brings  oxygen  to   the  tissues   • Equal  blood  flow  in  circuits  –  prevents  fluid  accumulation  in  lungs  and   oxygenated  blood  delivery  to  the  body   • Side-­‐by-­‐side  pumps:  right  and  left  side  feed  different  circulatory  circuit   o Right  side  serves  pulmonary  circuit   o Left  side  serves  systematic  circuit     o In  general:  blood  flows  from  right  side  of  heart  à  lungs  à  left  side  à   body  tissue  à  back  to  right  side  (constant  cycle)   o More  resistance  in  the  systematic  circuit  so  the  wall  of  the  left   ventricle  is  thicker  than  the  right   • Valves:  direct  blood  flow  in  the  heart   o Atrioventricular  valves:  direct  blood  from  the  atria  to  the  ventricles   § Valves  between  atria  and  ventricles   • Tricuspid  valve:  has  3  flaps  on  the  right  side  of  the  heart   • Bicuspid  valve:  has  2  flaps  on  the  left  side     o Semilunar  valves:  direct  flow  from  atria  to  aorta  or  pulmonary  trunk   but  do  not  allow  backflow  from  the  ventricles  to  the  atria   § Allow  blood  from  the  heart  out  to  the  circulation  circuits  –   oppose  blood  back  into  the  heart  from  circuits   § Located  at  the  origin  of  the  pulmonary  artery  and  aorta   • Fibrous  Skeleton:  layer  of  dense  connective  tissue  found  between  the  atria   and  the  ventricles   o Serves  as  an  attachment  site  for  the  myocardium  of  the  ventricles   o Structurally  and  functionally  separates  the  atria  from  the  ventricles   o Provides  support  for  the  valves   Cardiac  Cycle   • Repeating  pattern  of  the  contraction  and  relaxation  of  the  heart   o Systole:  contraction  phase   § Isovolumetric  contraction  phase  and  ejection  phase   o Diastole:  relaxation  phase   § Isovolumetric  relaxation  phase,  rapid  filling  phase  and  atrial   contraction  phase   o Diastole  and  systole  partitioned  differently  –  diastole  is  longer   • Occurs  in  both  the  atria  and  the  ventricles   • Ventricles  are  power  pumps  –  generate  force  to  push  blood  through  circuits   • Atria  primary  job  is  to  fill  up  ventricles   • Isovolumetric  contraction:  all  valves  are  closed   o Closed  compartment  with  the  ventricle  contracting  à  pressure   building  up  but  volume  stays  the  same   o Atria  relaxed,  ventricles  contract   • Ventricular  ejection:  pressure  in  left  ventricle  >  pressure  in  aorta  à  blood  is   pushed  out  of  the  ventricles  of  the  heart  à  semilunar  valves  open   o Atria  relaxed,  ventricles  contract   • Isovolumetric  ventricular  relaxation:  all  valves  closed  with  entering  diastole     o Pressure  in  the  atria  >  pressure  in  the  ventricle  à  Atrioventricular   valves  open  and  the  heart  begins  to  fill  –  rapid  ventricular  filling   o Atria  and  ventricles  relaxed,  Semilunar  valves  closed   • Atrial  contraction  (atrial  systole):  delivers  final  amount  of  blood  into  the   ventricles   o Atria  contract,  ventricles  relaxed   • Atria  are  primer  pumps  but  serve  an  important  purpose  the  textbook   overlooks   • During  systole  there  is  a  spike  in  pressure  to  eject  the  blood  out   o EDV  (End  Diastolic  Volume):  volume  of  the  blood  in  the  heart  before  it   ejects   o Stroke  Volume:  ejected  out   Electrical  Activity  of  the  Heart   • Atria  and  ventricles  are  “electrically  isolated”  from  each  other  by  the  fibrous   skeleton  of  the  heart   o They  can  contract  separately   • Functional  syncytium:     o Gap  junctions  of  intercalated  discs  electrically  couple  cardiac   mycocytes     o Automaticity   § Automatic  nature  of  the  heartbeat   § Due  to  autorhythmic  cells  that  comprise  the  heart’s   conduction  system   • Autorhythmic  cells:  non-­‐contractile  cardiac  muscle   cells   o Pacemaker:  right  atrium,  where  the  autorhythmic  cells  are  found   § Region  where  spontaneous  electrical  signal  originates   • Location  of  autorhythmic  cells   § Sinoatrial  or  SA  node   • Right  atrium   Pacemaker  Potential:   • Cells  of  SA  node  exhibit  slow,  spontaneous  depolarization—called  pacemaker   potential   • Result  due  to  channels  opening  because  of  membrane  events   (hyperpolarization  from  previous  AP)   • Channel  permits  Na  to  flow  into  the  cell,  causes  a  depolarization  event  à   funny  current   • Channels  open  because  of  the  hyperpolarization  of  the  previous  action   potential  –  not  because  of  depolarizationà  sodium  channels   • Diastolic  depolarization:   o At  threshold,  voltage-­‐gated  calcium  channels  open  for  depolarization   with  repolarization  resulting  from  opening  of  voltage-­‐gated   potassium  channels   • Autonomic  nervous  system  influences  the  rate:   o Everything  starts  in  the  right  atria  –  the  SA  node  is  under  influence  of   parasympathetic  and  sympathetic     o Parasympathetic  decreases  heart  rate  because  receptors  open  up   separate  potassium  channels  à  elongate  pacemaker  potential   o Sympathetic  releases  epinephrine  and  norepinephrine  which   increases  heart  rate  –  causes  an  increase  in  cAMP  in  the  cell   § Pacemaker  potential  cells  are  called  HCN  channels   § cAMP  influences  the  HCN  channels  and  shortens  the   pacemaker  potential     Myocardial  Action  Potential   • In  adjacent  cardiac  muscle  cells  in  the  myocardium,  initiated  by  pacemaker   cells  to  produce  action  potentials   • Different  from  skeletal  muscle:   o Open  up  fast  sodium  channels  which  causes  a  spike   o Open  slow  calcium  channels  and  slow  potassium  channels  à   produces  elongation  aka  plateau     Conducting  Tissue  of  the  Heart   • Action  potentials  from  SA  node  spread  at  0.8-­‐1m/sec  across  atria   • Conduction  slows  with  AV  node-­‐delay   • Conduction  speeds  increase  with  fastest  in  purkinje  fibers  –  5m/sec   • Ventricular  contraction  begins  ~  0.1-­‐0.2  seconds  after  atrial  contraction   Excitation-­‐Contraction  Coupling   • Note,  a  calcium-­‐induced  calcium  release  is  observed  from  the  SR  as  seen  in   skeletal  muscle,  however  excitation-­‐contraction  coupling  is  slower  due  to   system  not  as  efficient  as  in  skeletal  muscle   • Calcium  is  lowered  by  calcium-­‐ATPase  pumps  of  SR  and  Na-­‐Ca  exchanger  in   plasma  membrane   • Unlike  skeletal  muscle  and  smooth  muscle,  cardiac  muscle  cannot  sustain  a   contraction  –  contractions  lasting  about  300msec   • Long  absolute  refractory  period  prevents  summation  of  contraction,  ensures   rhythmic  pumping  of  heart   • Is  summation  important  to  the  heart?   o No,  it  is  electrically  coupled  –  the  cardiac  muscle  cells  are  activated   anyway  by  gap  junctions   o We  don’t  need  summation  because  we  have  functional  syncytium     Blood  Vessels   • Conduits  that  form  a  network  throughout  body  permitting  distribution  of   blood  to  body  tissues   • Diverging:  big  vessels  going  to  smaller  ones   • Converging:  vessels  coming  together  to  get  larger  and  larger   • Muscular:  deliver  and  control  blood  flow  to  organs   o Large  tunica  media   • Layers  –  TIME     o Layers  of  a  vessel  deepest  to  the  most  superficial   § Tunica  interna   § Tunica  media   § Tunica  externa     • Elastic:  internal  elastic  lamina   o Can  enlarge  and  recoil  back  à  smoothing  effect   • Capillaries:  site  of  exchange   o Endothelium  with  a  basement  membrane  wrapping  around  them   • Arterioles:  adapted  for  vasoconstriction  and  vasodilation     o Used  for  regulation   o Respond  to  minute-­‐to-­‐minute  changes   o Regulation  within  the  organ   • Pressure  within  the  venial  side  is  less  than  on  the  arterial  side   Capillaries   • Functional  unit  of  cardiovascular  system   • Smallest  blood  vessels   • Endothelium  with  basal  membrane   o Endothelium:  simple  squamous  cells   • Branch  extensively   o Metarteriole  (arterial  capillary):  shunt  between  these  branches   • Well  suited  for  function  –  exchange     • Do  not  function  independently  but  together  as  a  group  à  referred  to  as  a   capillary  bed   o Allow  blood  to  flow  through  it  then  close  the  blood  supply  off  if  it  is   not  needed   • Flow  into  capillary  bed  controlled  by  pre-­‐capillary  sphincter  –   contracts/relaxes  in  response  to  tissue  needs   o Observed  to  follow  a  cycle,  contracting/relaxing  at  a  rate  of  ~5-­‐10   cycles/min  –  vasomotion     Basic  types  of  capillaries:   • Continuous:  (Least  leaky)   o Most  common   o Located  in  all  vascularized  tissue   o All  organs  have  these   • Fenestrated:   o Similar  to  continuous  but  contain  pores  or  fenestrations  covered  by   membrane  (diaphragm)   o Allows  exchange  and  usually  found  where  active  absorption  or   filtration  occur   o Intestine,  kidney,  and  endocrine  organs   • Sinusoids  (discontinuous):  most  leaky   o Highly  modified,  leaky  capillaries  restricted  to  certain  organs   o Suited  for  passage  of  large  molecules  and  blood  cells   o Discontinuous  basement  membranes   o Restricted  to  the  liver,  spleen  and  bone  marrow   Veins   • Large  lumens  and  thin  walls   • Accommodate  large  blood  volume,  thus  referred  to  as  capacitance  vessels   • Low  pressure,  so  structural  adaptations  arose  to  ensure  blood  returns  to   heart:   o Large  diameter,  low  resistance   o Venous  valves  –  ensures  unidirectional  flow   o Skeletal  muscle  pumps  


Buy Material

Are you sure you want to buy this material for

25 Karma

Buy Material

BOOM! Enjoy Your Free Notes!

We've added these Notes to your profile, click here to view them now.


You're already Subscribed!

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

Why people love StudySoup

Jim McGreen Ohio University

"Knowing I can count on the Elite Notetaker in my class allows me to focus on what the professor is saying instead of just scribbling notes the whole time and falling behind."

Amaris Trozzo George Washington University

"I made $350 in just two days after posting my first study guide."

Steve Martinelli UC Los Angeles

"There's no way I would have passed my Organic Chemistry class this semester without the notes and study guides I got from StudySoup."


"Their 'Elite Notetakers' are making over $1,200/month in sales by creating high quality content that helps their classmates in a time of need."

Become an Elite Notetaker and start selling your notes online!

Refund Policy


All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email


StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here:

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to

Satisfaction Guarantee: If you’re not satisfied with your subscription, you can contact us for further help. Contact must be made within 3 business days of your subscription purchase and your refund request will be subject for review.

Please Note: Refunds can never be provided more than 30 days after the initial purchase date regardless of your activity on the site.