New User Special Price Expires in

Let's log you in.

Sign in with Facebook


Don't have a StudySoup account? Create one here!


Create a StudySoup account

Be part of our community, it's free to join!

Sign up with Facebook


Create your account
By creating an account you agree to StudySoup's terms and conditions and privacy policy

Already have a StudySoup account? Login here

Life 103-Week 9 Notes

by: Addy Carroll

Life 103-Week 9 Notes Life 103

Addy Carroll
GPA 3.65

Preview These Notes for FREE

Get a free preview of these Notes, just enter your email below.

Unlock Preview
Unlock Preview

Preview these materials now for free

Why put in your email? Get access to more of this material and other relevant free materials for your school

View Preview

About this Document

These notes cover Animal Diversity and Evolution and Animal Taxa: Invertebrates I (Diversity).
Biology of organisms-animals and plants
Dr. Dale Lockwood and Dr. Tanya Dewey
Class Notes
25 ?




Popular in Biology of organisms-animals and plants

Popular in Biology

This 7 page Class Notes was uploaded by Addy Carroll on Friday March 25, 2016. The Class Notes belongs to Life 103 at Colorado State University taught by Dr. Dale Lockwood and Dr. Tanya Dewey in Winter 2016. Since its upload, it has received 12 views. For similar materials see Biology of organisms-animals and plants in Biology at Colorado State University.

Similar to Life 103 at CSU

Popular in Biology


Reviews for Life 103-Week 9 Notes


Report this Material


What is Karma?


Karma is the currency of StudySoup.

You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 03/25/16
Life 103 Notes *adapted from the lecture notes of Dr. Tanya Dewey* Animal Diversity and Evolution • Themes of Biology -Organization-structure and function, emergent properties, reductionism -Information-information is transferred between generations through genes (heredity) -Energy and Matter-all organisms require energy and matter, resources are often limited, look for trade-offs -Interactions-interactions are important at all levels of organization (cell to organisms to communities to the biosphere) -Evolution-nothing in biology makes sense except in the light of evolution • Themes in Animal Diversity -Trends in evolution -Tradeoffs and constraints -Different perspectives and ways of life • What is science? -Asking testable questions, formulated as hypotheses -Using evidence to answer those questions -Employing parsimony-simple explanations are preferred -Biology is a science -Science is a way of approaching problems that is applicable to nearly every aspect of your life • Eukaryan Diversity -Protists -Plants -Fungi -Animals • What are animals? -Metazoans -zoo or zoa=animals ~Ex.) Zoology • How well do we know animals? -<1million named species -Estimates up to 7.8 million total -86% of species on land yet to be discovered -91% of marine species yet to be discovered -Even in very common places, there are still many more species to be discovered -Most species on this planet are animals -70% of animals are insects -Animals have been around for a long time, but relative to every other species, they’re relatively recent • Ediacaran Origin -Animals evolved, including extant taxa and extinct forms -Only a few animal phyla evolved • Cambrian Explosion -Oldest fossils of half of extant animal phyla -Most major animal body plans evolve -Almost every other animal phyla that didn’t evolve in Ediacaran evolved in Cambrian • What are animals? =Metazoans -Multicellular -Ingestive heterotrophs ~Do not produce own food; take food into body and digest internally -Move under own volition at some point in life ~At some point they were motile -Lack cell walls, have structural proteins (extracellular matrix) -Unique, specialized cells: nerve and muscle (except sponges) ~Most animals have these cells, whereas they aren’t found in any other species -Sexual reproduction -2n (diploid) dominant -Flagellated sperm, non-motile egg -Most have larval stage -Cells are organized into tissues -Conserved genes control development (Hox genes) -Zygote undergoes cleavage, forms blastula, gastrulation • Eumetazoa=true tissues -Doesn’t include sponges because they don’t have true tissues -Metazoa includes sponges, but eumetazoa doesn’t • Themes in animal evolution (see textbook figure 32.11) -Origin of multicellularity -Origin of bilateral symmetry, cephalization, and the nervous system -Origin of embryonic tissue layers -Origin of a coelom -Origin of protostome and deuterostome development -Origin of segmentation • Origin of multicellularity -Choanoflagellates are the unicellular sister group to animals (see textbook figure 32.3) -Evolved at the origin of animals (Metazoa; includes sponges and all other animals) • Origin of bilateral symmetry, cephalization (formation of a head), and the nervous system -Types of symmetry ~Bilateral symmetry (Ex. Beetle) ~Radial symmetry (Ex. Coral polyp) ~No symmetry (Ex. Sponge) ~Pentaradial symmetry/pentamerism (echinoderms, except their larvae have bilateral symmetry) -Bilateral symmetry means you can have a head = cephalization ~Having a head gives the animal directionality (front and a back) ~Having a head gives the animal the ability to eat/be a predator -Concentrate sensory apparatus and nervous system at head -Evolved at the Bilateria origin (has bilateral symmetry if ancestor is Bilateria, Ctenophora and Cnidaria have radial symmetry, and sponges have no symmetry) -Genetic mechanisms responsible for bilateral symmetry and cephalization are shared (homologous) • Origin of embryonic tissue layers -Diploblastic=2 tissue layers (Endoderm and Ectoderm) -Triploblastic=3 tissue layers (Endoderm, Mesoderm, and Ectoderm) -Species with Bilateria ancestor are triploblastic, while Ctenophora and Cnidaria are diploblastic • Origin of a coelom -Animals are tubular-tubes within tubes -Coelom- a fluid-filled body cavity between the inner and outer tubes; disengages gut from outer layers, space for nutrients to move, forms basis of hydrostatic skeleton -3 body plans (see textbook figure 32.9) ~Acoelomate=no coelom ~Coelomate=has coelom ~Pseudocoelomate=false coelom (not a true coelom) -Pseudocoelomate has the space touching both the mesoderm and endoderm, while a true coelom only touches the mesoderm -Cannot say the coelomate evolved at a specific point of the tree because the body plans are randomly distributed ~Diploblastic and sponges don’t have coeloms ~Body plans scattered among Bilateria species • Origin of protostome and deuterostome development -“Stoma”=opening or mouth -Protostome-the mouth is formed before the anus ~”First mouth” -Deuterostome-the anus is formed before the mouth ~”Second mouth -The first opening in protostomes is the mouth, while the first opening in deuterostomes is the anus -Deuterostomes evolved at Deuterostomia -Protosomes, or “Spiralia,” evolved at Lophotrochozoa and Ecdysozoa • Origin of segmentation -Not all animal groups show segmentation -Common genes called Hox genes control segmentation -Suggesting flexible response through evolutionary history -Why segmentation? ~Permits specialization-genetic duplication releases copies to be modified for new purposes-look for this theme in vertebrate evolution Animal Taxa: Invertebrates I (Diversity) • Invertebrate Diversity (see textbook figure 33.3) -Morphological and molecular data are combined to understand relationships among animal phyla -Molecular (DNA) data has revolutionized our understanding • “Big 9” animal phyla -Porifera -Cnidaria -Platyhelminthes -Mollusca -Annelida -Nematoda -Arthropoda -Echinodermata -Chordata • *Porifera (sponges) -5,000-10,000 species -Filter feeding -No symmetry -Sessile -Mostly marine • Ctenophora (comb jellies) -100-150 species -Predatory -Radially symmetrical -Motile (via cilia) -Entirely marine • *Cnidaria (jellyfish, corals, anemones) -Over 10,000 species -Predatory or filter feeding -Radially symmetrical -Both motile and sessile -Mostly marine • Placozoa (“flat animals”) -1 to a few species -Detritivore -Radially symmetrical -Motile (via flagella) -Entirely marine • Acoela (acoel flatworms) -Approximately 400 species -Predatory -Bilaterally symmetrical -Motile (via cilia) -Mostly marine • Rotifera (wheel animals) -Filter feeding -Bilaterally symmetrical -Motile -Mostly freshwater • Acanthocephala (spiny headed worms) -1150 species -Parasitic -Bilaterally symmetrical -Motile -Parasitic (freshwater) • Cycliophora -1-2 species -Discovered in 1995, found on the mouthparts of lobsters -Parasitic or commensal -Symmetry is not clear -Motile -Marine • Gastrotricha (hairybacks) -790 species -Detritivores -Motile -Marine and freshwater • Gnathostomulida (jaw worms) -100 species -Detritivore -Motile (via cilia) -Marine • *Platyhelminthes (flatworms) -25,000 species -Predators or parasites -Motile -Moist habitats • Entoprocta (“anus inside”) -150 species -Filter feeding -Sessile and colonial -Mostly marine • *Mollusca (mollusks) -85,000 species -More varied forms than any other phylum -Predatory, filter feeding, detritivores -Both motile and sessile -Marine, freshwater, terrestrial • Sipunculida (peanut worms) -320 species -Filter feeding -Motile -Marine • Brachiopoda (lamp shells) -330 species -Filter feeding -Sessile -Marine • Phoronida (horseshoe worms) -25 species -Filter feeding -Sessile -Marine • Ectoprocta/Bryzoa (moss animals “anus outside”) -4,000 species -Filter feeding -Sessile -Mostly marine • Nemertea (ribbon worms) -1,800 species -Predatory and parasitic -Motile -Mostly marine, some freshwater and terrestrial • *Annelida (segmented worms) -22,000 species -Predatory, filter feeding, detritivores, sanguivores -Both motile and sessile -Marine, freshwater, terrestrial • Priapulida (penis worm) -16 species -Detritivore -Motile -Marine • Kinorhyncha (mud dragons) -Detritivore/predatory -Motile -Marina • Loricifera -120 species -Discovered in 1983 in anoxic, deep sea brine -No mitochondria -Feeding style unknown -Sessile -Marine • Nematomorpha (horsehair worms) -2,000 species -Parasitic -Motile -Freshwater or moist habitats • *Nematoda (roundworms) -15,000 species or up to 1 million -Half parasitic, half free living -Motile -Nearly all habitats and all elevations • Chaetognatha (arrow worms) -120 species -Predatory -Motile -Marine planktonic • Tardigrada (water bears) -1,150 species -Predatory -Motile -Moist habitats, extreme environments • Onychophora (velvet worms) -180 species -Predatory -Motile -Terrestrial • *Arthropoda (arthropods) -Many millions -Every feeding style imaginable -Motile -Marine, freshwater, terrestrial • What are the patterns you observe in the diversity of animal phyla? -Most phyla live in marine habitats, however, terrestrial phyla tend to have more overall diversity


Buy Material

Are you sure you want to buy this material for

25 Karma

Buy Material

BOOM! Enjoy Your Free Notes!

We've added these Notes to your profile, click here to view them now.


You're already Subscribed!

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

Why people love StudySoup

Steve Martinelli UC Los Angeles

"There's no way I would have passed my Organic Chemistry class this semester without the notes and study guides I got from StudySoup."

Allison Fischer University of Alabama

"I signed up to be an Elite Notetaker with 2 of my sorority sisters this semester. We just posted our notes weekly and were each making over $600 per month. I LOVE StudySoup!"

Bentley McCaw University of Florida

"I was shooting for a perfect 4.0 GPA this semester. Having StudySoup as a study aid was critical to helping me achieve my goal...and I nailed it!"


"Their 'Elite Notetakers' are making over $1,200/month in sales by creating high quality content that helps their classmates in a time of need."

Become an Elite Notetaker and start selling your notes online!

Refund Policy


All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email


StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here:

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to

Satisfaction Guarantee: If you’re not satisfied with your subscription, you can contact us for further help. Contact must be made within 3 business days of your subscription purchase and your refund request will be subject for review.

Please Note: Refunds can never be provided more than 30 days after the initial purchase date regardless of your activity on the site.