New User Special Price Expires in

Let's log you in.

Sign in with Facebook


Don't have a StudySoup account? Create one here!


Create a StudySoup account

Be part of our community, it's free to join!

Sign up with Facebook


Create your account
By creating an account you agree to StudySoup's terms and conditions and privacy policy

Already have a StudySoup account? Login here

ASTR 151 Chapter 6 Part 2

by: Wesley Fowler

ASTR 151 Chapter 6 Part 2 ASTR 151 001

Marketplace > Astronomy > ASTR 151 001 > ASTR 151 Chapter 6 Part 2
Wesley Fowler

GPA 3.97

Preview These Notes for FREE

Get a free preview of these Notes, just enter your email below.

Unlock Preview
Unlock Preview

Preview these materials now for free

Why put in your email? Get access to more of this material and other relevant free materials for your school

View Preview

About this Document

These notes cover the origin of our solar system by explaining the nebular, condensation, core-accretion, and gravitational instability theories.
Journey Thr Solar Sys Lecture
Dr. Sean Lindsay
Class Notes
nebular, condensation, core-accretion, gravitational instability, Theory, Formation, Asteroid, ice line
25 ?




Popular in Journey Thr Solar Sys Lecture

Popular in Astronomy

This 3 page Class Notes was uploaded by Wesley Fowler on Friday March 25, 2016. The Class Notes belongs to ASTR 151 001 at a university taught by Dr. Sean Lindsay in Spring 2016. Since its upload, it has received 20 views.


Reviews for ASTR 151 Chapter 6 Part 2


Report this Material


What is Karma?


Karma is the currency of StudySoup.

You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 03/25/16
Wesley Fowler ASTR Chapter 6 Nebular Theory The nebular theory claims that the existing solar system was formed by the collapse of a giant cloud of interstellar gas and dust. 1. A cloud of gas and dust (nebula) exists 2. The nebula is compressed (by gravity, shockwave?) 3. Conservation of angular momentum causes nebula to rotate faster 4. The rotation speed causes the nebula to flatten into a disc called the Solar Nebula. It has a large central mass called the protosun 5. The dense materials (dust) in the Solar Nebula accrete together into planets and other solar system bodies Nebular theory is well supported by visual observation! Condensation Theory Condensation refers to the changing of phases, typically from gas to liquid. However, when dealing with the solar system, it’s from gas to solid. The planets and objects farther away from the sun are composed of more materials than the ones closer to the sun - This is called the compositional gradient of the solar system The planets and objects farther away from the sun have lower temperatures than the ones closer to the sun - This is called the temperature gradient of the solar system The temperature gradient of the early Solar Nebula explains why rocky planets formed close to the sun, while planets farther away remained gaseous. - Solid materials require higher temperatures to condense - Solid materials have higher densities than gaseous ones Hot: 1200-1500 K Warm: Around 500 K Cool: 200-300 K Cold: Around 50 K Ice Line: (T = 273 K) - Boundary in which icy grains can form Planet Building 1. Condensation of solids (Condensation Theory): Two grains of ice for each grain of rock - Inner SS: Rock and Metal grains available - Middle SS: Metal, Rock, and High T ices (e.g., water) - Outer SS: Metal, Rock , High and Low T ices 2. Accretion of solids: Grains clump together in the protostellar cloud - More material is available farther from the sun due to lower density, thus larger planets 3. Collection of solid grains into planetesimals: Grow from cm to km - Gravitational attraction begins when planetesimals reach 10-100km in size - Leftovers of these are asteroids! 4. Formation of protoplanets out of planetesimals: Begin to have strong gravitational force - 100 – 1000+ KM in size 5. Combination of protoplanets via collision - How we think the moon was formed, why Venus rotates “backwards” This process explains how terrestrial planets, rocky cores of gaseous planets, and other SS objects are formed. The sequence takes about 100 million years. Core-Accretion Theory Much larger protoplanets form beyond the ice line due to the abundance of materials that have not condensed. - Gas giant planets have solid cores that have an immense gravitational force. These cores attract huge amount of gas from the nebula itself, and thus become massive. The core-accretion theory is disapproved of by many scientists, as the time required for the exceeds beyond the lifetime of solar nebula Gravitational Instability Theory The giant gaseous planets formed in a very similar way that the Solar nebula did, with gases from the original nebula condensing into planets The gravitational instability theory is disapproved of by many scientists because there is simply not enough mass in the solar disc to cause this type of gravitational collapse. The core-accretion theory is currently better supported than the gravitation instability theory. Clearing the Disk Strong solar winds blow interstellar dust, gas, and leftover planetesimals out of the solar system. This isolates and defines the specific planets and interstellar objects


Buy Material

Are you sure you want to buy this material for

25 Karma

Buy Material

BOOM! Enjoy Your Free Notes!

We've added these Notes to your profile, click here to view them now.


You're already Subscribed!

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

Why people love StudySoup

Jim McGreen Ohio University

"Knowing I can count on the Elite Notetaker in my class allows me to focus on what the professor is saying instead of just scribbling notes the whole time and falling behind."

Amaris Trozzo George Washington University

"I made $350 in just two days after posting my first study guide."

Jim McGreen Ohio University

"Knowing I can count on the Elite Notetaker in my class allows me to focus on what the professor is saying instead of just scribbling notes the whole time and falling behind."

Parker Thompson 500 Startups

"It's a great way for students to improve their educational experience and it seemed like a product that everybody wants, so all the people participating are winning."

Become an Elite Notetaker and start selling your notes online!

Refund Policy


All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email


StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here:

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to

Satisfaction Guarantee: If you’re not satisfied with your subscription, you can contact us for further help. Contact must be made within 3 business days of your subscription purchase and your refund request will be subject for review.

Please Note: Refunds can never be provided more than 30 days after the initial purchase date regardless of your activity on the site.