### Create a StudySoup account

#### Be part of our community, it's free to join!

Already have a StudySoup account? Login here

# INTR DIGITAL SIGNL PROC ECEN 4763

OK State

GPA 3.58

### View Full Document

## 15

## 0

## Popular in Course

## Popular in ELECTRICAL AND COMPUTER ENGINEERING

This 0 page Class Notes was uploaded by Louisa O'Kon I on Sunday November 1, 2015. The Class Notes belongs to ECEN 4763 at Oklahoma State University taught by Damon Chandler in Fall. Since its upload, it has received 15 views. For similar materials see /class/232894/ecen-4763-oklahoma-state-university in ELECTRICAL AND COMPUTER ENGINEERING at Oklahoma State University.

## Reviews for INTR DIGITAL SIGNL PROC

### What is Karma?

#### Karma is the currency of StudySoup.

#### You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 11/01/15

An swe r 50 SHEETS 22141 V 22142 100 SHEETS Mer 22144 200 SHEETS x x09 H 1 A5Aim we CAM inLc an sismf xb as A quotSumquot 6 9 Scaled gamut MVmBeS xLB 8 th She DAI II39LWVMW 4 M m0 6quot HQ Ab xu 7 2346 1 L KQTP h If ED Mquot lzgqsbiiiq M is Igt I v w I1345 619q t A wgt gt 4 39 23 5amp3 q 39 39 A F 392543185 E W444 i pamg 0 Mean 9 aloe 4 35M char5 W W lowcr MumLeg SLEEHS 003 b f L39ZZ SEEIHS Gm 211 L39ZZ SLEEHS OS Li39L ZZ VdMV gr 0 P f CT IA ovl z ovl 4 Jaw Les PMquwai in Hi 5quot cgdesj V M Q 3917 ltI QoLt bLsS 4 9 211ch T U perl cg 013 P ELE EOJbcl A 513ml Fm Samuel A in Hi3 L A l quot AW w Lwda39hngd 4 I Mme in radians 5 no 2 277430 ECEN 4763 Introduction to Digital Signal Processing Fall 2008 Lecture 19 Wednesday October 1 2008 DT Processing of CT Sidnals Part 1 Introduction 2 Sampling overview 3 Model of ideal sampling Why revisit CT signals Why revisit CT signals Sampling overview Iquot39 x39csm u g 93 may 1 r a en 4 I aiwioktgtwg weerU 413 Shmptaj l V 1 L quotL 1 m N DLerm 41 rcxwi whF srjml mmr EIL canons in 1x I i Ideal sampl39ng 1 E L w E i 9 C A nib IF 1 9f pier LJe M Q 93 1 M 7 r 7 i kCL 45 a w x 1 j Jc GU Ideal sampling a IM o 3 if 239 Cite 141 7 4 11 39WAXEQE i Ideal sampling Ideal sampling 55 EM V V guns 14 Jn i V I V 32141 Wu 4430qu x967 E Answ rz 3 466 75 bmJIZMILe L such nHrmfl39 XML 0 4m lm 2 sum we came Smnw Z W Maia54 Tr Juarwu r 17 2 Mars look 91L XLSD x Lm M4 XLEJA LTFT m0 xca Mg 4 g mee SL573 XSLID Sa XsLm ZXLnk b 4na LcuH r 9M9 f 13 MWV W E 4 LT 39hirwwa 0 gter W LL47 qu ug 0 via A SL39TS su Fad imam MarWALL I g XLeJW Time domain Frequency domain wash XUJ A b e D 4 M X Li Yr 0 T5 arsm h mm Mg Km Afr v T r m o 1 z 3 4 Z n 7 D 21 mime Shawquot No z sfl s quot ZTT 27v 7 5 DomL orbsimi enigma1 my 7 samplpa Q rajc 4 Z Jl Fr iw T cw VF PliClLJ LS XLED mi iwlxx mr mailElna c 57 Mme swam art semi In Ta 39i Wuv Labquot eCculn CT39 Quamow J in 0 0 TJT 442LC3 w Cm radiian MaiHeal xLiogTs 391me 39 E Swmlalsxa rpmv mc o F V03 CrAloms L gs rs h 213 1r 7 ECEN 4763 Introduction to Digital Signal Processing Fall 2008 Lecture 16 Wednesday September 24 2008 Ma 9 1 DT Fourier Part V Ideal Iowpass and highpass DT filters 2 Some DT filter examples DT Fourier Part V 1 Ideal Iowpass and highpass DT filters Ideal filters 148 m1 i quotL to if k L J 3 4am fesslaw l hpku vw 3 g i i x 1 1 14P Ideal filters Nonideal filters Nonideal filters ECEN 4763 Introduction to Digital Signal Processing Fall 2008 Lecture 6 Friday August 29 2008 Introduction to DT Part II 1 DT rectangles 2 Properties of DT signals 3 Operations on DT signals DT rectangles w 1 1 Q 5 m4 N l m VD 0 7 abs ZSL A ID k ii I AIDE 6 3 l v 1 V HA DT rectangles DT rectangles quotT t quot 39 t t s 4 Ex raob vt67 t 1 0 his 4 L Tb 3 m 3 7 o 7 eLsLe Introduction to DT Part II 2 Properties of DT signals nals Periodici Pro erties of DT si Properties of DT siqnals Periodic Period N Properties of DT siqnals Periodicity ozc s fi I l 39 i i 39 J r i s i i 5 V A 1h w an i EWW i U i i Vvx n Ei 1 j waipamplnrib i i i 39 t e H a 1 i i i i i i 39 i 39 I i i l i roof for DT I Ii a r 39 a aquot I i i f l i i i 054 hm i esweMLquotv 3M DOOM quotmm 7 IVLl cser MmL Hpte 39 39 i I 39 oF WW 93 EEZII 7 Ngto i L 4mm i f i v J i w vi xn iaeifoo Proof for DT Properties of DT siqnals Periodicitv K p z Properties of DT siqnals Periodicity 3 a w L 39 e 115 4196 Jacky 7quot i 7 Properties of DT siqnals Enequ amp Power Hirer a die Fl39 i I mauhlcimo J ili39Eii iliriifli iiiii P Qerties of DT siqnals Enerqv amp Power Qgh rhc 551 1 1 1 1 1 1 fl 1 Progerties of DT signals Duration 711 71 1 71 1 7 1 1 7L1 aJ ol Wyna build ACE W 7 7 1 1 1 1 r axisI nale alley5 AI 44 NZ 1 NZ gtle 51117 W xda 175 7 4 15m 1 944 1 1 i VXLVOOV 4amp1 11 V 1 17 i 7 r 1 1 7 7 Wm 5an w a 1A gtr1L 1 1 1 r 1 1 1 1 fke My 1or Lang 1 70 x00 3975 jim 1 1 1 1 1 V 1 1 7 1w 39 4 1 1 1 1 1 1 b 151 71ij 1 39 W W 1 Introduction to DT Part II 3 Operations on DT signals Operations on DT siqnals Operations on DT siqnals g ixj m i m glam re gm am l A 1391 I VH z Mamw quot I M 39 quot x we Operations on DT siqnals I tier 5 1 l3 QXZMX mm 560 1 lm gum swmm L x M i huh j Ogerations on DT signals 3 glam 1 ragga 3 7 7 X h 1 1 1le i 1 3 fL V 1 i 39 139 F 139 7 71D 399 n1 quot 777 W V 777 7777 7 quot7 77 7 77 r Mnl H gHltA HM 590751010 XZLVD 7 7 j J Ogerations on DT signals 7 AAAH icm 3010 Kim 1 XLKM 717 4 7 quot F 1 1 A 1 Ex I y 71 7 LLVD v u um 1 XMD 1 11w V 39 7 if 7 r 1 rnjs 3z us zsdzsza 5 1 blf34i e mi z 1 Ogerations on DT signals 3 T 1 j LMVQ 1 7541146 A1 4 Sle Subhun 1 gun mmf szvn Ogerations on DT signals Mathelkck am 4m 2 may Kim 1 bI254 b1 Ogerations on DT signals 1 1 V 7 quot 9m xm 7 MD i In gt1 3 7 1ng quot SM H 4 M 35va nblto mimme Skill 7527M 43 V Ogerations on DT signals Ogerations on DT signals 39 m J eutrsa 1 1 J 7 Ogerations on DT signals Coy Ud log h OA I g 7 x ILvD 3K ltZLVO 7 0 1 1 x m39 Xian kn 1 3er 1 iquot 1 lewn kb xLLn 1 1 4 1 Operations on DT siqnals in CT I mvr 3L9 331L742me V I QEMTQEIM a xzm XyL CWEX ZLt c AliC 21mm szLn kT 1 w km Voa E OEWVQLEA bum 152265 madm iguwluas Mata Mr scaled ampsmw harm or 9 Operations on DT siqnals H 2mm xzt39 v 43 I kzoa mm 2 xzm Z 54 szw IILB 1 Dav X Lk MzMt 39 1 I 39 d 544 g I 4144 39 gt Riga31M alt i xfLLA Operations on DT siqnals i 3 mun gt400 prD x2flx2n 1x2n 2 Operations on DT siqnals 3400 3 I x2nx2n 1x2n 2 a f L i XZLm i i i I xzm 77 39 x n g Xsz l 1 o I 2 quot 139 39 1 n g 9113 gm Operations on DT siqnals mm prD 39 j Z Enj o ECEN 4763 Introduction to Digital Signal Processing Fall 2008 Lecture 25 Friday October 17 2008 537 Multirate DSP Part 1 Why do multirate DSP 2 Downsampling for rate reduction Multirate DSP Part 1 Why do multirate DSP Why do multirate DSP To change the rate of signals Rate sampling rate Q Change 44 kHz to 22 kHz wave files Q Change 24 fps to 30 fps video Rate size for finitelength signals Q Change 512x512pixel to 32x32pixel image To save computation Q Fast Fouriertransform Multirate DSP Part 2 Downsampling for rate reduction Downsamgling Skpvom Lautlre Smut m UT 5 6M xm Mip Hawk Mb 5 make 1 a 39mePDT A M erM IS shrsrh r per K LMpLILgt wppeg am new 41 rcslze A SLZKSIL p md Evabag dawn 0 51539th 25in Fme s We Ga U15 Proof3 amp9meaWLPqu Maxquot M 53 W L 2an 4gt 20h mqu XLVD 7 lz 03 4 w Wqu L on 2 an xczvm 197161 1W0 w jun bgzbw gt 9 41 13 1 w me 10L 160 blLS iSCpqiql DuVLy DILS QSQ D 9 N m3 amatm 1L9 1amp0 V II 0Laq 3 ND M 2m 244 M ALVD csz3 Downsamgling In 3 Obiw39aaymth 55quot M cerr powix 5 keeping awn 9 Mi SMLPLQ ELM xCMv I HcZMw cg siresL 3 win 64 does E 7ch Late 7 ng g vHvT39s eiwm favl as W keg 39DYPT Par n l Evy 7E XLMM MW lmed 23 kTD Useful equation N roots of unity M 0095 g MNg M4 1 M B L mu p e a M L 4ng w k0 M 5 IL b O Kc maAy k a 51 le 13 M wM Mm ErLei39 xcm pk 2amp1 h J 6quot M Mal op 12 M m J u 4 gtltLme k 6 M M 159 9 J 14 39 V Xtmj h i 335 L o nus pa 1 M L M 1 o XLe JLZ 7 E Ml w Ex 7 Ct 3 Zxceb 2 l b I aw x i gt k D k 1 Downsam Iin Downsampling E YCcchmtg 3 3amp9 44mg sFerzPrbLum 03 41a iuwv rskmr cq asked Le5 3 ml 30 do Is lLe JILLLM LE D swat 0 Wu x028 m ugz mode S39h b39HJx 54ch SW1m coMIfmvvl39 our lag Acfbf 0 M AbauA Hi5 WLBJFDIW Lw5127c3 47139 69c lt3 Scate 41m Inefjh 33 gelL meWm i 1 L M Downsam Iin can ive rise to aliasin mam A High j 5 qu 7v 1 o 395 K 217 M ECEN 4763 Introduction to Digital Signal Processing Fall 2008 Lecture 14 Friday September 19 2008 DT Fourier Part III 1 DTFT of rectangles 2 Inverse DTFT examples 3 Properties of the DTFT 1 DT Fourier Part III DTFT of rectangles The DTFT of a general rectangle The DTFT ofa eneral rectan Ie The DTFT ofa eneral rectan Ie D39Pr Qadwglz M nd 4 Igt Veaodzc mm m 412 ng um mm m m EH1 u mum DT Fourier Part III 2 Inverse DTFT examples Inverse DTFT Inverse DTFT Smc m 47me u Tperiootic 215mg m MAM 41M 39dehc A m A91 w LynAha DT Fourier Part III 3 Properties ofthe DTFT Properties of the DTFT 1 l t i 1 1 t r 3 t t w 1 i i 17 t 1 ltEW tv l dL39DTF I39ihl it x06 b Xi ibb 1 39mm XLVL JLO H quot ejwv o XL im t 1 r 1 1 Q 1 Lm mango t t t 1 t 94 aim vaD Hmquot New 1 we 1 t t Properties of the DTFT Properties of the DTFT Periodic convolution Convolve one period of one spectrum with the full periodic version of the other spectrum r i i i i s i 39 z i i i Slaeeimm Pects chc ants Ila y l i r Ma 81me one VaTGA 9444 29L sedat w 2 iii gk i i i may Peeejorivi e ejmr awardsgm 64 Cldmioi L1 1 1 W is awibs k 7 i i i 1 Mimi Hi 4 M 5 i Mbki vhm39ls 757 e a Hmmus nguoLyLlti4Em bangser i i i i m i a i 39 gj 1 1 i I YL S WB 1is 53 LawHawaii Emma E v 1 i i i i 1 i i i 3 i i r i 1 i i i IiiTr 3 i i 3 i i i Properties of the DTFT COMOLwHMJA FMA i 1 chn 43in taterquot V r 1 l i i am 9me st Kim 81quot X tei39QX X155in i i i i ECEN 4763 Introduction to Digital Signal Processing Fall 2008 Lecture 7 Wednesday September 3 2008 Introduction to DT Part III 1 DT convolution examples 2 Properties of convolution DT convolution Three ways of performing DT convolution 1 83A graphical method Scale shift stack and add 2 FSMA graphical method Flip shift multiply and add 3 Analytical method DT convolution D jade Elm5147 thick mm 4442 59 Chase 5w signal ugt slut e3 xltwh 327 W virLcr szjmlk SouM13145 will beam PL 2 541 lama e5 x xLllt7gt Q cm account 4 slid lea version Mk leuk 0D 5inch em a mu MM um MP W Fug EMSH muggy MA 1AA DESCu M IM version m We CT jmp39mICJ waivwa all WUoLAIcH aIl W lt5 Sshu 44H aowuoleoIp Suw amalghmug 3 X LVLUWAK 32sz M 39 3 xmgt ltan ltW 1 wk 4 1 1 LX m kple Q i7 DT convolution 83A method EZM twierprw one 01 Au SEMI as salt J 414040513 XILM 3 th 2 U2 Kline r hz m a Gig xiLu lcbv at XiLk LitM t seallg imghamw iu r l Sterile 5quotquot Exit DT convolution 83A method A Z 2 X JR s lt2quot j l 1 91 V 39lOI Step 1 Choose one signal to scaleshift Step 2 Draw scaledshifted versions 345b 3quot 3 l 4 00 X101 07 c 5 I Kit I 2 2 Vi m1 quot01 olz DT convolution 83A method n i a 2 xL o quot5 gtXlt xzm I 1 Q 1 n Step 3 Stack and add DT convolution FSMA method 39FLRE ski9 MalRpm M Z5T quum 043 Q r pht39caul CDWUGLLL HM Owpu 5Lsz or at 5492 ShoLe Home across mm m compuJ e and as 4442 quotwquot oil GW AF DT convolution FSMA method l q chth 1 ll gtllt Ln 5 Step 1 Draw x1 k X2k and an output axis for yn Xl glbk A I I is b 2iol3 1394 10 IL A 3m 1l0z34 DT convolution FSMA method Step 2 Shift X2nk across X1 k and compute overlap

### BOOM! Enjoy Your Free Notes!

We've added these Notes to your profile, click here to view them now.

### You're already Subscribed!

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

## Why people love StudySoup

#### "There's no way I would have passed my Organic Chemistry class this semester without the notes and study guides I got from StudySoup."

#### "I bought an awesome study guide, which helped me get an A in my Math 34B class this quarter!"

#### "I was shooting for a perfect 4.0 GPA this semester. Having StudySoup as a study aid was critical to helping me achieve my goal...and I nailed it!"

#### "It's a great way for students to improve their educational experience and it seemed like a product that everybody wants, so all the people participating are winning."

### Refund Policy

#### STUDYSOUP CANCELLATION POLICY

All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email support@studysoup.com

#### STUDYSOUP REFUND POLICY

StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here: support@studysoup.com

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to support@studysoup.com

Satisfaction Guarantee: If you’re not satisfied with your subscription, you can contact us for further help. Contact must be made within 3 business days of your subscription purchase and your refund request will be subject for review.

Please Note: Refunds can never be provided more than 30 days after the initial purchase date regardless of your activity on the site.