×

### Let's log you in.

or

Don't have a StudySoup account? Create one here!

×

or

1 review
by: Jasmine Ngo

33

1

2

# Physics Mechanics PHYS123

Jasmine Ngo
IIT

Get a free preview of these Notes, just enter your email below.

×
Unlock Preview

Covers Rotational Motion, Torque, Moment of Inertia. and Newton's Second Law of Rotation
COURSE
Mechanics
PROF.
TYPE
Class Notes
PAGES
2
WORDS
CONCEPTS
Physics, mechanics
KARMA
25 ?

## 1

1 review
"I was sick all last week and these notes were exactly what I needed to get caught up. Cheers!"
Kaela

## Popular in Physics 2

This 2 page Class Notes was uploaded by Jasmine Ngo on Sunday March 27, 2016. The Class Notes belongs to PHYS123 at Illinois Institute of Technology taught by in Spring 2016. Since its upload, it has received 33 views. For similar materials see Mechanics in Physics 2 at Illinois Institute of Technology.

×

## Reviews for Physics Mechanics

I was sick all last week and these notes were exactly what I needed to get caught up. Cheers!

-Kaela

×

×

### What is Karma?

#### You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 03/27/16
Lecture: Rotational Motion, Torques, Moment of Inertia, and Newton’s 2nd Law of  Rotation Constant angular acceleration equations: ω =ω0 +αt  θ =θ0 +ωt + 1 /2 αt ^2  ω2 =ω0^ 2 + 2α(θ −θ0 ) This is analogous to kinematics equation where ω is in rad/s while α is in rad/s^2 Torque: τ = rFsinθ where force must be tangent to the object.  Cross Product: The vector of torque can be found using the following:  τ =  r ×  F = rFsinθ  where r and F are vectors and be solved by using cross product τ = r × F = (rx  i + ry  j + r z  k)×(Fx  i + Fy  j + F z k)  Kinetic Energy of Rotation: ∑ 1/2mv^2 Can also be written as KE = 1/ 2 Iω^2 where I is momentum of inertia Moment of Inertia: I=m1r ^2  +(2m2)r^2  where m1 is mass 1 and m2 is mass 2 Rotation about Center of Mass: Rotational intertia is given by I=m1r^ 2 + m2r^ 2 Moment of Inertia for Rod: 1 /3 mL^2 where L is the length of the rod.  Parallel Axis Theorem: I = Icm+ mr^ 2 where Icm is the momentum of inertia of the center  of mass It is important to note that rotation through the center of mass minimizes the moment of  inertia Newton’s 2nd Law for Rotation:  τ = Iα τ = rF For a pulley and tension string: τ = rFsin θ Inertial mass is how much force it takes to accelerate an object Rotational mass is how much torque it takes to accelerate an object.  Rotational Power: τω

×

×

### BOOM! Enjoy Your Free Notes!

×

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

## Why people love StudySoup

Steve Martinelli UC Los Angeles

#### "There's no way I would have passed my Organic Chemistry class this semester without the notes and study guides I got from StudySoup."

Allison Fischer University of Alabama

#### "I signed up to be an Elite Notetaker with 2 of my sorority sisters this semester. We just posted our notes weekly and were each making over \$600 per month. I LOVE StudySoup!"

Bentley McCaw University of Florida

Forbes

#### "Their 'Elite Notetakers' are making over \$1,200/month in sales by creating high quality content that helps their classmates in a time of need."

Become an Elite Notetaker and start selling your notes online!
×

### Refund Policy

#### STUDYSOUP CANCELLATION POLICY

All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email support@studysoup.com

#### STUDYSOUP REFUND POLICY

StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here: support@studysoup.com

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to support@studysoup.com