×

### Let's log you in.

or

Don't have a StudySoup account? Create one here!

×

### Create a StudySoup account

#### Be part of our community, it's free to join!

or

##### By creating an account you agree to StudySoup's terms and conditions and privacy policy

Already have a StudySoup account? Login here

by: Hiba Kouser

35

1

4

# L09 Notes BIOL 4700

Hiba Kouser
Clemson

Get a free preview of these Notes, just enter your email below.

×
Unlock Preview

### Preview these materials now for free

Why put in your email? Get access to more of this material and other relevant free materials for your school

These notes cover everything in the L09 powerpoint.
COURSE
Behavioral Ecology
PROF.
Michael J Childress
TYPE
Class Notes
PAGES
4
WORDS
KARMA
25 ?

## Popular in Biology

This 4 page Class Notes was uploaded by Hiba Kouser on Wednesday March 30, 2016. The Class Notes belongs to BIOL 4700 at Clemson University taught by Michael J Childress in Fall 2016. Since its upload, it has received 35 views. For similar materials see Behavioral Ecology in Biology at Clemson University.

×

## Reviews for L09 Notes

×

×

### What is Karma?

#### You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 03/30/16
I. Optimal Foraging A. Prey Selection Model (What size prey items should be selected to maximize the net rate  of energy intake?) 1. Holling’s Disc Equation  a. R = rate of energy intake b. Eg = Energy gained by R = (E – E )/ (T  + T ) g  h s h consumption c. E  h energy lost to handling  d. T  s time spent searching e. T  h time spent handling  2. Assumption: prey items of different sizes will have different profitabilities (energy gained/ energy expended) 3. Prediction: optimal foragers should select prey that maximize their net energy intake  4. Predictin: optimal foragers should be choosy about the size of prey they select B. Diet Selection Model (Which prey type should be included in an optimal diet to  maximize the net rate of energy intake) 1. a. Model predicts being a specialist when (E h /E1 1– 2  > 12  λ1 b. Searching and handling are mutually exclusive activities  c. Encounter with prey is sequential and random  d. E, h, λ remain constant  e. Forager has complete information  2. Potential Constraints a. Excessive handling time/energy b. Nutritional needs other than energy c. Balancing the risk of predation C. Patch Selection Model 1. Marginal Value Theorem: a rate maximizing forager will choose the residence time or each patch type so that the marginal rate of gain at the time of leaving equals the long  term average rate of energy intake in the habitat 2. a. Searching for patches and feeding within one are mutually exclusive b. Encounters with patches are sequential and random c. The gain function remains constant d. Forager again has complete information  3. What determines the optimal time spent in a patch? a. Understand the shape of the curve, and the distance between you and your next  patch  b. Give­up­density (GUD)­ when travel time between patches is short, the GUD is  larger D. Risk Sensitive Model 1. Patches equal in mean rewards differ in their variance 2. A satiated forager should be risk adverse and choose the less variable patch 3. A hungry forager should be risk prone and choose the more variable patch  E. Predation Foraging Trade Off 1. Forager should forage optimally so long as it does not result in higher risk of  predation 2. When predators are present, alternative foraging strategies that minimize predation  risks are favored  3. Ex. Sticklebacks a. Sticklebacks choose high prey density when predator is absent but low prey  density with predator is present because it is easier for them to watch for predators II. Antipredatory Behaviors A. Evolutionary Arms Race 1. Red­Queen hypothesis: organisms must constantly adapt to survive while pitted  against ever­evolving opposing organisms in an ever changing environment 2. Evolutionary Arms Race: predators and prey co­evolve due to their strong  evolutionary influence on one another  3. Prey should: a. Avoid encounters b. Avoid detection c. Avoid capture Predators  Prey ­Visual activity Cryptically Search image Polymorphism Search patterns Spacing patterns Learning ability Mimicry Speed Evasive maneuvers Offensive weapons Defensive weapons De­toxins Toxins  B. Predation Risk Model 1. P (death) = 1 – e^(­α *d *T) a. α = rate of encounters b. d = probability of death per encounter with predator c. T = time spent vulnerable to encounters with a predator  2. d = [ p(1­a)(1­i1)(1­e1) + q (12i ) (12e )] (3­e ) a. p = probability prey detects predator first b. q = probability predator detects prey first c. a = probability prey avoids predator d. i = probability predator ignores prey e. e = probability prey escapes predator  3. Avoiding Encounters a. Reducing α or T parameters b. Timing of Activity i. Circadial patterns ii. Circatidal patterns  c. Sheltering behavior i. Crevices or burrows ii. Commensal spaces  4. Avoiding Detection a. Coloration  i. Disruptive  ii. Cryptic iii. Polymorphism b. Distribution and spacing c. Cryptic behavior i. Remaining motionless ii. Swaying rhythmically  5. Discouraging Attacks a. Coloration i. Aposomatic coloration (bright coloration to demonstrate toxicity) ii. Batesian mimicry (similar coloring to toxic animals) b. Advertising Unprofitability i. Stotting – deer jump in air which advertises their fitness ii. Inspection visits c. Group behaviors can discourage predators by i. Increasing your apparent size ii. Disguising your true identity d. Individual behaviors can discourage predators by i. Illustrating superior escape abilities  6. Escaping Attacks a. Startle coloration  i. Bright flash patches ( eyespots)2      z s b. Evasive maneuvers c. Group Behaviors i. Vigilence ii. Confusing effect iii. Mobbing  7. Avoiding Consumption  a. Defensive Structures (spines and stings) b. Defensive Behaviors (autonomatization and bites) c. Chemical Weapons ( sprays and toxins) C. Risk Effects 1. Predator risk effects arise when: a. Predator alters the behavior of prey b. Negatively influences the fitness of prey c. Antipredator responses can reduce either survival or reproduction d. Risk effects can exceed direct predation effects  2. Whether prey should minimize direct predation or risk effects depend on their  relationship? a. Ex. Spiny lobsters adaptations i. Gregariousness begins:   When crypsis ends   When seeking crevices shelters  Before group defense is effective ii. Gregariousness is  Favored by reducing attacks  Not favored by escaping attacks  May be decreasing in lobsters today

×

×

×

### You're already Subscribed!

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

## Why people love StudySoup

Bentley McCaw University of Florida

#### "I was shooting for a perfect 4.0 GPA this semester. Having StudySoup as a study aid was critical to helping me achieve my goal...and I nailed it!"

Anthony Lee UC Santa Barbara

#### "I bought an awesome study guide, which helped me get an A in my Math 34B class this quarter!"

Bentley McCaw University of Florida

Forbes

#### "Their 'Elite Notetakers' are making over \$1,200/month in sales by creating high quality content that helps their classmates in a time of need."

Become an Elite Notetaker and start selling your notes online!
×

### Refund Policy

#### STUDYSOUP CANCELLATION POLICY

All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email support@studysoup.com

#### STUDYSOUP REFUND POLICY

StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here: support@studysoup.com

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to support@studysoup.com

Satisfaction Guarantee: If you’re not satisfied with your subscription, you can contact us for further help. Contact must be made within 3 business days of your subscription purchase and your refund request will be subject for review.

Please Note: Refunds can never be provided more than 30 days after the initial purchase date regardless of your activity on the site.