New User Special Price Expires in

Let's log you in.

Sign in with Facebook


Don't have a StudySoup account? Create one here!


Create a StudySoup account

Be part of our community, it's free to join!

Sign up with Facebook


Create your account
By creating an account you agree to StudySoup's terms and conditions and privacy policy

Already have a StudySoup account? Login here

Chapter 18: Regulation of Transcription in Eukaryotes

by: Rachael Couch

Chapter 18: Regulation of Transcription in Eukaryotes Biol 2311

Marketplace > University of Texas at Dallas > Biol 2311 > Chapter 18 Regulation of Transcription in Eukaryotes
Rachael Couch
GPA 3.9

Preview These Notes for FREE

Get a free preview of these Notes, just enter your email below.

Unlock Preview
Unlock Preview

Preview these materials now for free

Why put in your email? Get access to more of this material and other relevant free materials for your school

View Preview

About this Document

I am a TA for the course this year and got a 98 on exam 4 from studying these notes when I took the class. These are my notes- study them and you WILL do well!
Introduction to Biology
John Burr
Class Notes
25 ?




Popular in Introduction to Biology

Popular in Department

This 3 page Class Notes was uploaded by Rachael Couch on Friday November 20, 2015. The Class Notes belongs to Biol 2311 at University of Texas at Dallas taught by John Burr in Fall 2014. Since its upload, it has received 34 views.


Reviews for Chapter 18: Regulation of Transcription in Eukaryotes


Report this Material


What is Karma?


Karma is the currency of StudySoup.

You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 11/20/15
Chapter 18: Control of Gene Expression in Eukaryotes Animal cells can be controlled on the level of 1. Chromatin remodeling 2. Splicing of the primary RNA transcript 3. mRNA stability 4. Post­translational modifications Transcriptional Control in Eukaryotes vs Prokaryotes  Bacteria has a promoter that consists of the “pribnow box” (­10 region) and the ­35  region”. In most bacterial genes, the promoter is all that is necessary for RNA polymerase to sit down on the DNA and begin transcription.   Eukaryotic RNA polymerase does not bind to its promoter (transcription does not occur)  without the assistance of other proteins.  Eukaryotic Promoters   Eukaryotic promoters have a sequence that resembles the Pribnow box called a TATA  box located ­25 to ­35 to the transcription start site.  RNA polymerase cannot directly bind to the promoter (the TATA box), instead, a protein called TBP (TATA box­binding protein) binds at the promoter site.  o TBP induces a sharp bend in the DNA o TBP is a subunit of a protein complex called TFIIID  TFIIID = [TBP + 13 “TAF” proteins (TBP­Associated  Factors)].  After TFIID binds to the TATA box and bends the DNA, a set of additional proteins  (TFIIA, TFIIA, TFIIE, TFIIH) are recruited to the promoter. These proteins are called  general transcription factors.  Once the general transcription factors have assembled on the promoter, RNA polymerase  can bind. Activator Proteins  The assembly of the general transcription factors on the promoter requires assistance of  additional gene regulatory proteins called transcriptional activators  These proteins bind adjacent to the promoter (promoter proximal elements) or at more  distant locations (enhancers)  Activator proteins can assist in the assembly of general transcription factors on the  promoter even though they are so far away due to the flexibility of DNA.  The activator at enhancer sites binds comes in direct contact to help assemble  transcription factors because the DNA can bend to make a loop to allow it to do so.  Most often the interaction between the activator proteins and the general transcription  factors involves a protein complex called a mediator  Chromatin­remodeling proteins and histone acetylases act to modify the nucleosome  structure Chromatin  Eukaryotic DNA wraps around histone proteins to form nucleosomes. The combination  of DNA and histones is called chromatin  Chromatin can exist both in an extended “beads on a string” state and in more condensed  forms, most specifically a form called the 30nm fiber o The 30nm fiber is the basic state of most chromatin in the cells  Genes are inaccessible for transcription in a 30nm fiber o Accessible in the “beads­on­a­string” form  Chromatin­remodeling proteins and histone acetylases act to convert chromatin in the  30nm form to the more accessible “beads­on­a­string” form, which permits the binding of transcriptional activators and permits RNA polymerase to transcribe  Also, Chromatin­remodeling complexes  o 1) Reposition the nucleosome on the DNA (often exposing enhancer sites) o 2) Loosen the DNA on the nucleosomes for RNA polymerase   Other chromatin remodeling complexes return the nucleosomes back to their standard  state when gene expression is finished Histones and nucleosomes  Nucleosome = core of 8 histone proteins: 2 each of histones H2A, H2B, H3, and H4  Each of the 4 types of histone protein that form the octameric core of a nucleosome has it  amino terminus “waving free”.  These “free waving” amino terminal segments are rich in the positively charged amino  acid lysine  These lysines in the amino­terminal histone segments are what can become acetylated by  the histone acetlyases  Acetylation of these lysines has several functions in gene activation, including unpacking of the 30nm fiber, and also recruiting general transcription factors such as TFIID once the fibers have been unpacked  Acetylation of histone lysines by histone acetyl transferases (HATs) is associated with  decondensing chromatin and making genes accessible for transcription o Acetylation = activation  Removing these acetyl groups from the histones, by histone deacetylases (HDACs),  silence gene expression by repacking the nucleosomes back into 30 nm fibers Alternative RNA splicing  Another aspect of regulation gene expression in eukaryotes  Different proteins are encoded by a single gene but the primary RNA transcript is spliced  differently in the two different cell types to produce 2 mRNAs o Different mRNAs  different (but related) proteins  Ex: The expression of two different versions of the protein tropomysin in skeletal muscle  versus smooth muscle RNA interference (micro RNAs)  miRNA molecules act to target certain mRNA molecules (to which they are  complementary in sequence) for rapid degradation  There are several hundred genes that encode miRNA molecules, that have evolved to  target specific mRNAs in the cytosol, thereby limiting the lifetime of these mRNAs and  limiting expression of the protein encoded by the target mRNA.  These miRNAs initially form a hairpin structure which is trimmed in the nucleus, then  exported to the cytosol, where the loop at the end is cleaved, yielding ultimately a 22  nucleotide long double­stranded mature miRNA molecule.  In the cytosol the RISC complex (a set of proteins) binds the double­stranded miRNA,  removing one of the strands.    The remaining strand is complementary to a sequence on the target mRNA.    The miRNA­RISC complex then binds the target mRNA, and a ribonuclease component  of the RISC complex cleaves the mRNA.  If there is an imperfect match between the miRNA and the mRNA, the mRNA is not  cleaved, but the RISC­miRNA complex remains bound to the mRNA, thereby inhibiting  its translation.


Buy Material

Are you sure you want to buy this material for

25 Karma

Buy Material

BOOM! Enjoy Your Free Notes!

We've added these Notes to your profile, click here to view them now.


You're already Subscribed!

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

Why people love StudySoup

Steve Martinelli UC Los Angeles

"There's no way I would have passed my Organic Chemistry class this semester without the notes and study guides I got from StudySoup."

Amaris Trozzo George Washington University

"I made $350 in just two days after posting my first study guide."

Bentley McCaw University of Florida

"I was shooting for a perfect 4.0 GPA this semester. Having StudySoup as a study aid was critical to helping me achieve my goal...and I nailed it!"


"Their 'Elite Notetakers' are making over $1,200/month in sales by creating high quality content that helps their classmates in a time of need."

Become an Elite Notetaker and start selling your notes online!

Refund Policy


All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email


StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here:

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to

Satisfaction Guarantee: If you’re not satisfied with your subscription, you can contact us for further help. Contact must be made within 3 business days of your subscription purchase and your refund request will be subject for review.

Please Note: Refunds can never be provided more than 30 days after the initial purchase date regardless of your activity on the site.