New User Special Price Expires in

Let's log you in.

Sign in with Facebook


Don't have a StudySoup account? Create one here!


Create a StudySoup account

Be part of our community, it's free to join!

Sign up with Facebook


Create your account
By creating an account you agree to StudySoup's terms and conditions and privacy policy

Already have a StudySoup account? Login here

Lecture - October 29th, Nov. 3rd and 5th

by: Andrea

Lecture - October 29th, Nov. 3rd and 5th 11883 - GEO 105 - 01

Marketplace > Grand Valley State University > Geology > 11883 - GEO 105 - 01 > Lecture October 29th Nov 3rd and 5th
GPA 3.0

Preview These Notes for FREE

Get a free preview of these Notes, just enter your email below.

Unlock Preview
Unlock Preview

Preview these materials now for free

Why put in your email? Get access to more of this material and other relevant free materials for your school

View Preview

About this Document

These notes discuss the fossils in the Great Lakes, the formation of our present day lakes, as well as wave formation and refraction.
Living with the Great Lakes
Tara Ann Kneeshaw
Class Notes
25 ?




Popular in Living with the Great Lakes

Popular in Geology

This 5 page Class Notes was uploaded by Andrea on Friday November 20, 2015. The Class Notes belongs to 11883 - GEO 105 - 01 at Grand Valley State University taught by Tara Ann Kneeshaw in Fall 2015. Since its upload, it has received 22 views. For similar materials see Living with the Great Lakes in Geology at Grand Valley State University.


Reviews for Lecture - October 29th, Nov. 3rd and 5th


Report this Material


What is Karma?


Karma is the currency of StudySoup.

You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 11/20/15
Living with the Great Lakes   Notes from class on October 29th, November 3rd and 5th, 2015.    Holocene Changes:  ● In­between glacial advances: Trees and Fossils. LIFE!  ○ Quaternary period ­ Pine and Spruce forests covered the Great Lakes region.  ■ 15,000 years ago.  ● Don’t find it today. Evidence today is shown ­ Ancient forests  found. buried under sediments; no oxygen = preserved.   ■ Rapid climate fluctuations started occurring 10,000 years ago.    ● Conifer and hardwood species.  ● Still see today.  Fossils:  ● Freshwater, clams, snails, fish, amphibians and birds.   ○ Today’s beaches ­ freshwater environment today.  ● Mammals:  ○ Mammoths: teeth in Michigan. Some evidence.   ○ Mastodons: LOTS in Michigan. Similar to Mammoths; but different in size and  tusks were different.   ■ Elephant like. Very hairy.   ■ Tusks are not bigger and curved compared to Mammoth.   ○ Musks oxen: Still exists today. Cold regions ­ very hairy beasts.  ○ Giant Beavers: Following the last ice age. Michigan has the most collection of  complete skeletons.   ○  Disappeared in North America 10,000 years ago.   ■ Population decreased steadily.   ■ Thrived in cold climate.   ○ Owosso, Michigan. Found most complete skeleton. Lots of bones!  ■ Largest footprint trail (mud dried, buried in soil, and turned to shale)  ● Longest intact trail (30 feet prints) near Ann Arbor.   ○ Official Michigan State Fossil: Mastodon fossil.     Deglaciation: Story of the Great Lakes    ● Important dates: 14,500 years ago (very young geologically speaking)  ○ Coming out of the Pleistocene era.  ○ Last time ice covered the Great Lakes region.  ○ Significant ­ the shape of the ice sheet before the melt, dicated the main shape of  the Great Lakes.   ■ Distinct lobes during meltback.  ○ 14,000 years ago.  ■ Ice is shrinking back.  ■ Lobe shape is more obvious.  ■ Water/ice filling and persisting at valleys (ancient river valleys) and  depressions.  ● Middle Lake Maumee (780 ft)  ● Early Lake Chicago (640 ft)  ■ Lowest elevation was to the South and flowed toward Mississippi River.   ● 2 main channels flowing across the state.   ● Grand River: At the time deeper and wider, was a main drainage  system.  ○ Deep channel  ○ Lake Border Moraine System was built.   ○ 13,000 ­ Slow process.  ■ Evidence of Native American living in this region.  ● Lake Michigan Lake turned into.  ○ Lake Whittlesey (738 ft)  ■ Connects and drains to Lake Saginaw (695 ft) and  the Mississippi River.  ■ Forming: Port Huron Moraine (end moraine).    Factors Controlling Lake Levels:  1. Position of ice ­ main position of ice is what helped cause the lake to from.  a. As it melts back, it opens up and allows connections to early lakes (as  one whole system) which exposes the openings and allows new places  for the water to form.  2. Glacial rebound: Massive weight of the Earth.  a. Caused massive depression in the mantle. Once the pressure is removed  ­ the mantle (because of it’s toothpaste­like consistency, bounces back  up)  i. This is still happening today. Not in MI exactly, except for L.  Superior.  ii. Mostly in Canada.   b. This effects the elevation. Water is sensitive to change, and will start to  flow somewhere else as the mantle pushes up.   c. Currently, the G.L. region is stable.   3. Erosion of outlets: Rivers and streams carry sediments. Melt water streams/rivers  create deep channels. They form on top of loose glacial till ­ blasting soil and  sediments away.   a. Overtime they carve down into the geology. And will continue to carve  down until it reaches something that the water can’t get through = hard  bedrock. Or base level.  i. This is a stable point and eventually all rivers and channels do  this.    1. Ex. Colorado River  ii. Creates interesting effects on the Lakes. Effects drainage rates.    1. At one point ­ the drainage rate was too high and all the  water nearly escaped out of the Lakes.  November 3rd, 2015.    Crust Rebounds:  ● Elevation changes and stabilizes.  ● Isostatic Rebound: Land was relieved of the huge weight of the ice sheets. Earth’s crust  from its “depressed” state begins to accelerate.  ○ Isostasy: Refers to the state of gravitational equilibrium between the Earth’s  lithosphere and asthenosphere.  ○ Tectonic plates “float” at an elevation that depends on the thickness and density  in the lithosphere.   ● Glacial Rebound:​ Modern rates measured rebound.   ○ Different rates in different places.  ○ In millimeters per year. (Around Lake Superior it rises 1/10th of an inch per year).  ■ Ex. Hudson Bay was the thickest part of the ice sheet. Still rising.  ■ Michigan is not really rebounding, only on the edge of L. Superior.   ● 6,000­4,000 years ago.  ○ Highest Lake levels ​ver.  ○ The Great Lakes started to flood.  ○ Why did this happen? The North Bay outlet rose enough that it backed up the  water and created a natural dam.  ● Mississippi Stage:  ○ Reverse flow ­ until the North Bay carves deep enough and is able to stabilize.   ■ L. Superior was 40ft higher than it is today.  ■ High stage carves out present coastal features.  ■ Lots of sand was deposited because of high water/waves.  ● Wave zones had more energy = sand dunes    FOR THE EXAM: BE ABLE TO SAY HOW THE G.L. FORMED   Summary: Slowly down rebound, flooded/the outlets hit base level = stable, shifting of outlets,  warming of climate.                           November 5th, 2015.     Shoreline: Wave dynamics and Coastal Landforms.  ● Created: Most common shoreline in G.L.  ○ Sand beaches.   ■ Sand deposited with waves from Lake bottoms.  ● Sand is the term used to describe particles that range in a diameter from .0625 to 2 mm.   ○ Where did sand come from? The Basin. Rock and previous mountain ranges.  ■ Weathering and erosion overtime broke down overtime.   ○ Sand is made up of:  ■ Rocks, crystals, sea shells and minerals.  ○ Compositions of sand can change greatly from beach to beach.  ■ Hawaii = basalt. Olivine. Dark and red. Volcanic.  ■  Caribbean = white. Sea shells from tiny marine organisms.   ■ Great Lakes = tan. Grains of quartz. Some iron!   ● Ancient Beaches:  ○ Had higher lake levels  ○ Beach ridges are now buried in vegetation.    ■ Harder to see than moraines.  ○ Proglacial lakes (present lakes during glacial time)  ■ Ancient shoreline  ■ Allendale use to be at the beach!   Waves:  ● Where do they come from?  ○ Created by wind as it transfers its energy to the water's surface.   ■ Basically ­ a pile of water gets pushed by the wind.   ○ The wave gains energy due to the friction between the wind and the water.  ■ Example. Waves propagate like ripples on a pond. Wind hits the lakes  and sends the energy out in all directions.  ● Ripple Pattern: Troughs and Crests  ○ Bottom and Top  ○ Waves energy can perform work on sediment, rock, and structures.  ○ Energy gets released when it hits shore.   ■ Collides with bottom of the lake nearer and falls over on itself.  ● Topple: The bottom (trough) speeds up and the top (crest) slows  down.  ■ This energy gets transferred as work and blasts sediment as it hits.  ■ Waves deposit more than it removes, depending on how much is in the  water.  ○ Beneath the wave the water moves in a circular orbits ­ bobbing motion.  ○ No water motion beneath the wave base.   ○ Size of circular moiton get smaller and smaller.   ○ The bottom of the lake floor gets hit by the wave base which creates smaller  circles and speeds up the bottom of the wave.   ○ Sediments are picked up by the wave base hitting the lake floor and with the  energy of the wave crashing are thrown and deposited onto shore.    ● Wave Refraction:   ○ Wave converge on headlands:  ■ Headlands ­ hard rock. Stick out into the water and erosion doesn’t affect  those.   ■ Irregular coasts become smoother.   ■ Softer rocks = bays.   ■ Waves refract and converge to headlands.   ● Erods eventually to equal the coast line and the bay.   ● Coastline becomes straighter.   ○ Young = irregular.  ○ Older = straight.  ■ Caves form when water erodes the base and gradually cuts down the  base and above.    ● ex. Lake Superior caves  ■ Notches form when water cuts only at the base of the rock and erodes it.  It cuts out the support for the larger rocks and eventually they collapse.  ● Longshore Current:  ○ Waves hit at an angle.  ○ Net energy is “down” the beach   ○ Usually depends on direction the wind is blowing.  ■ Moves suspended sand and surf zone  ○ Water flows back off the beach more directly  ■ Leads to rip currents  ○ Not directly parallel to the beach  ● Beach Drift:  ○ Sediment moves in a zigzag pattern.  ○ Generally moves in direction of longshore current, but moving in and out. Not  moving in a straight line.  ■ Littoral transport: carries sedimentary material both parallel to the shore  and perpendicular to the shore.   ■ Today: We can predict where sediment is going.  ● ex. Miami Beach. In order to maintain it’s most popular beaches  and destinations, you need to know where the sand is going to be  eroding and dumping.     


Buy Material

Are you sure you want to buy this material for

25 Karma

Buy Material

BOOM! Enjoy Your Free Notes!

We've added these Notes to your profile, click here to view them now.


You're already Subscribed!

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

Why people love StudySoup

Jim McGreen Ohio University

"Knowing I can count on the Elite Notetaker in my class allows me to focus on what the professor is saying instead of just scribbling notes the whole time and falling behind."

Anthony Lee UC Santa Barbara

"I bought an awesome study guide, which helped me get an A in my Math 34B class this quarter!"

Jim McGreen Ohio University

"Knowing I can count on the Elite Notetaker in my class allows me to focus on what the professor is saying instead of just scribbling notes the whole time and falling behind."

Parker Thompson 500 Startups

"It's a great way for students to improve their educational experience and it seemed like a product that everybody wants, so all the people participating are winning."

Become an Elite Notetaker and start selling your notes online!

Refund Policy


All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email


StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here:

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to

Satisfaction Guarantee: If you’re not satisfied with your subscription, you can contact us for further help. Contact must be made within 3 business days of your subscription purchase and your refund request will be subject for review.

Please Note: Refunds can never be provided more than 30 days after the initial purchase date regardless of your activity on the site.