New User Special Price Expires in

Let's log you in.

Sign in with Facebook


Don't have a StudySoup account? Create one here!


Create a StudySoup account

Be part of our community, it's free to join!

Sign up with Facebook


Create your account
By creating an account you agree to StudySoup's terms and conditions and privacy policy

Already have a StudySoup account? Login here

Diversity II Notes Week 10

by: Jacob Erle

Diversity II Notes Week 10 211

Marketplace > Syracuse University > Foreign Language > 211 > Diversity II Notes Week 10
Jacob Erle
GPA 3.85

Preview These Notes for FREE

Get a free preview of these Notes, just enter your email below.

Unlock Preview
Unlock Preview

Preview these materials now for free

Why put in your email? Get access to more of this material and other relevant free materials for your school

View Preview

About this Document

These notes cover the video lectures done by Dr. Turner on social insects. He went into great depth into the behavior, anatomy, and physiology of bees and termites, much of which I didn't feel Pro...
Diversity of Life II
Justine Weber
Class Notes
25 ?




Popular in Diversity of Life II

Popular in Foreign Language

This 11 page Class Notes was uploaded by Jacob Erle on Friday April 1, 2016. The Class Notes belongs to 211 at Syracuse University taught by Justine Weber in Spring 2016. Since its upload, it has received 35 views. For similar materials see Diversity of Life II in Foreign Language at Syracuse University.


Reviews for Diversity II Notes Week 10


Report this Material


What is Karma?


Karma is the currency of StudySoup.

You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 04/01/16
Diversity of Life II Notes Week 10 Social Insects Video Lectures – Dr. Scott Turner 1.) Introduction to the Social Insects ­Primarily found in Orders Hymenoptera (wasps, ants, bees) and Isoptera (termites) Characterized by: ­Living in social systems, consisting of sterile workers and royal pairs ­overlap of generations in workers, which have shorter lifespan than royals ­specialization of labor:  foraging, brood care, sanitation, nest maintenance, and reproduction   caste system ­different roles can have different morphologies; worker caste is more generalized,  soldier ants can have large forceps, reproductive caste have wings Insect Colony acts as Superorganism  Body  Colony Cells  individuals in Colony Organs  Specialized Labor (with different castes) Reproduction  done by royal pair (king and queen = gonads) Coordination, maintaining homeostasis in the body similar to nest maintenance Superorganism serves as evolutionary model, with differing grades of sociality Cooperative Reproductive Overlap Brood Care Castes between generations Solitary ­ ­ ­ Quasisocia              ­    ­ l Semisocial             ­ Eusocial    ­Most social insects’ origins originated in Creatceous (Aculeate wasps), and during the Cenozoic Era they diverged into several lineages, and has developed at least 3­4times independently (see Geologic timeline) ­Termites social origins lie further back, during Triassic and possibly Permian period, and sociality  evolved independently probably only once, and earlier than in the wasps (ancestorssocial cockroaches) Sex determination differs ­Hymenoptera – haplodiploidy ­Isoptera – sex chromosome diploidy (think XX and XY in humans) Sex ratios also differ Hymenoptera (holometabolous) – worker caste is all female ­Isoptera (hemimetabolous) – 50:50 ­both orders show similarities in social organization (caste system):  reproductive, worker, soldier with  specialization among role Very real example of CONVERGENT EVOLUTION 2.) Kin Selection and the Evolution of Sociality in Insects Evolution of altruism – sacrificing one’s own reproduction to benefit reproduction of another ­doesn’t agree with postulates of Natural Selection Altruism does exist in social insect colonies (reproductive pair vs. sterile workers) Origins of Sociality ­Fitness (Sewall and Wright) – transmission of genes across generations ­J.B.S. Haldane – proposed that it doesn’t matter who transmits genes if the genes are identical –  principles of evolutionary fitness will remain constant Inclusive Fitness –fitness includes direct transmission of genes across the generations, and  transmission of copies of the same gene by others Kin Selection­probability of protecting related organisms will protect your own genes (parents  and offspring) Degrees of Relatedness Path Lengths Coefficient of −L(p) Relationship r= ∑ 2 p Paths of Relationship In Hymenoptera: Relationship Relatedness Parent­offspring 2 =0.5 ­2 ­2 Brother­brother 2 +2  = 0.5 Brother­stepbrother  2 =0.25 Cousins 2 x 2 =0.125 nd ­6 ­6 2  Cousins 2 + 2 = 0.03 3  Cousins 2 x 2  = 0.008 ­sex ratio skewed more towards the female ­workers induce queen to produce sisters and daughters ­only 1 male mates with the queen, high level of fidelity seen Reproductive Breakouts – reproduction by other bees (daughters) than the queen ­can give rise to sister queen, which inevitably can give rise to new colonies ­workers can control new development through providing developing larvae with ‘royal jelly’ ­in turn controlled by queen with select pheromone secretions *Remember – bees are holometabolous In Isoptera: ­50:50 sex ratio  ­hemimetabolous metabolism – development stages in instars ­instar can become nymph, then reproductive adult ­instar can even regress a stage to become a nymph Reticulitermes flavipes ­can consist of one central colony (contains reproductives) and satellite colonies (sterile workers) ­control of reproduction relates to control of development ­tropholaxis – pheromones secreted by queen will induce development of sterile workers ­not as strongly seen in those satellite colonies further away from the main one 3.) The Superorganism Organism­like systems: Biological Coalition ­between organisms, social insect colonies and/or symbiotic organisms ­strong degree of genetic affinity between one another Reproduction by proxy ­germ­line individuals are the privileged ones Common physiological interest ­specialization ­differentiation ­division of labor ­cognitive awareness Coalition members may divert their own reproductive contribution to other members in order to give  them more energy and greater fecundity Division of Labor In Hymenoptera: ­foragers collect nectar and pollen from the wild ­foragers deliver to worker bees inside the hive ­workers convert nectar to honey to be stored, pollen is stored ­activities of specialists are coordinated and regulated between members of the colony ­use behavioral feedback loops to keep coordination ­foraging dependent on nectar (constant) and pollen (decrease with increasing energy reserves)  In Isoptera: ­in digestive tract their paunch contains special microorganisms used in wood digestion  ­wood contains cellulose – good energy source but largely inaccessible to animals ­usually only accessible source for bacteria, fungi ­periodic molting must also come with re­uptake of digestive microbes, which come from other  colony members ­symbiotic interactions  termites able to digest pretty much anything, digestive fungi get  constant food source and protection from predators 3/31/16 Non­insect Invertebrates – Arthropods Traits ­bilateral symmetry ­segment body ­body divided into head and trunk ­well­developed exoskeleton, molted at intervals for growth; made of chitin (nitrogenous polysaccharide) ­open circulatory system ­complete gut Phylogeny ­insects derived from crustaceans and myriapods Subphylum Crustacean (70,000species, twice as many amphibians, reptiles, birds and mammals  combined) Morphology ­fewer species than insects but more diverse in form ­head section has 5 pairs of appendages, 2 pairs of antennae ­biramous appendages – branch out into 2 Habitat  ­primarily aquatic Class Brachiopoda (“gill foot”) ­much gas exchange done using gills found on long feet Morphology ­last segment of thoracic appendages used also for feeding and locomotion Habitat ­filter feeders, many freshwater species Life Cycle and Reproduction ­asexual is primary mode (only females are produced) ­when conditions are unfavorable males will be produced to make a ‘resting egg’ (escape pod) –  can help with transportation or may sink to water body and won’t emerge until better conditions  resume ­some are purely asexual Examples and Human Uses Daphnia (Water fleas) can be between 0.5­3mm long – crucial filter feeders for lake bodies Artemia (sea monkeys, brine shrimp) – inhabit salt lakes, estuaries; harvested in aquacultures Eubranchipus (fairy shrimp) – resident of vernal pools and fishless pools (helpful for amphibians  that rely on these temp water bodies) ­may also be harvested, hatched and reared to feed fish (Group Cladocera) *Phenotypic plasticity in Daphnia – can change shape in response to presence  of predators (development of sharp tooth) Polyphemus – predatory Leptodora Invasives – Cercopagis, Bythotrephes  Class Ostracoda (‘shell’), 68k described species (many of them are from fossils) Carapace covers the animal (‘seed shrimps’) ­found in both freshwater and marine systems (in the water column or found on the very bottom) ­reproduction similar to those seen in Cladocera; sometimes will mate in swarms ­used as indicator species Class Copepoda ~8,500­14,000species ­some freshwater, mainly marine (some are parasitic) Body plan st ­prominent 1  antennae Ecology ­most abundant herbivores on earth (phytoplankton consumers) Life Cycle and Reproduction ­obligate sexual; undergo metamorphosis (indirect development), some make resting eggs (can be very  long lived, can be over 300years) ­nauplius larva Infraclass Cirripedia (‘hairy foot’) Over 1000 species  Barnacles Body plan  thoracic limbs modified to filter and have no abdomen Habitat  ­all marine (some live in intertidal zone) attach to hard surfaces Ecology ­sessile, filter feeders Life Cycle  ­hermaphrodites, many don’t self­fertilize Ex. goose neck barnacles (consumed as delicacy in Japan, Spain) ­uses special cement to adhere to various substrates  Class Malacostraca  ­Contains 60­75% of crustacean species ­amphipods (‘scuds’), shrimp, lobster, crab Body Plan  ­head, thorax and abdomen Habitat ­marine, freshwater and terrestrial Ecology ­pelagic and benthic Ex.Mantis shrimp, common in tropics and subtropics *Don’t cross these guys, very powerful Ex. Euphausia superba – krill, dominant in Antarctic ­vital component for polar seas ecosystems Ex. Penaeus (pink shrimp)  Ex. Crayfish – omnivorous, some show maternal care for eggs (carrying, even brooding offspring) Ex. tropical freshwater shrimp – useful in nutrient cycling in aquatic rivers Ex. banded shrimp Ex. blue crab – found in NYS, more common in Chesapeake region; predators and scavengers Ex. Uca ­ fiddler crabs (M has 1 small claw, 1 large claw) Ex. Pagurus – hermit crabs (will find and inhabit shells to use) Ex. Eremitus – mole crab, burrow into sandy beaches Ex. spider, decorator and king crabs (huge) Ex. Isopoda, aquatic and terrestrial – potato bug, slater, and pill bugs (Armadillidium), sea lice Ex. Gammarus – sideswimmer or scud Deuterostomes – share same type of embryonic develplemnt ­radial cleavage Phylum Echinodermata (spiny skin) 2006­sequenced genome of purple sea urchin ­discovered hemichordates and echinoderms are sister groups to chordates Body Plan ­pentamerous (5­fold) radial symmetry as adults ­great fossil preservations due to very tough exteriors ­larvae are bilaterally symmetrical ­internal calcareous skeleton (often spiny, has projections) ­move about using water vascular system (tube feet); also used in respiration and feeding ­nervous system often in a ring, with radial nerves to legs (simple design but relatively well coordinated) ­no excretory organs Life Cycle ­most have males and females; external fertilization (release of egg and sperm to fertilize in open water) = planktonic larvae ­rare asexual forms ­all marine and almost all benthic, many seen near (rocky) shores ­no known parasitic species Class Crinioidea – sea lilies and feather stars ­sessile attached to 1 spot on surface ­main part of body supported above substrate (stalk) Clas Asteroidea – sea stars, starfish ­no sharp distinction between arms and body ­anus on top, mouth usually towards substrate ­move with tube feet, stiff and slow ­eat mollusks (bivalves) by inverting stomach into prey and digesting them Ex. Acanthaster (crown of thorns) starfish that eat coral polyps *El Nino event has led to one the worst bleaching events seen in the Great Barrier Reef in several decades Class Ophiuroidea – brittle stars and serpent stars (1900 extant species) ­arms set off from central disc, can move around more rapidly than sea stars ­internal skeleton is plates moved by muscles  ­no anus (1 opening to digestive cavity) ­can filter feed, scavenge or predate Class Echinoidea – sea urchins, sea dollars  ­skeleton made of interlocking plates ­urchins covered with moveable spines (softer in sand dollars) ­Mouth has 5 teeth of calcium carbonate – see Aristotle’s lantern ­most urchins scrape surfaces, eat algae or sessile animals Class Holothuroidea – sea cucumbers ­eaten in Asia ­long, wormlike ­5rows of tube feet run from mouth to anus ­Ossciles – reduced skeletal plates ­feeding tentacles around mouth Human Uses ­keystone grazers (urchins) and predators (sea stars) ­larvae used in deuterostome developmental biology ­eaten by human and sea otters (otters helpful in keeping urchins in check, see kelp forests) ­some make toxins used in pain medication Phylum Hemichordata (~120 species) ­marine worms ­closest living relatives to chordates ­dorsal extension of pharynx form anterior buccal tube ­most are filter feeders, burrow in sediment Phylum Chordata Subphylum Urochordata (Tunicata) – tunicates, ~1250­2000species ­includes salps and other groups Body Plan ­covered with polysaccharide tunicate coat of cellulose (not bony) Habitat and Ecology ­sea squirts filter water ­can be colorful ­can be solitary or colonial ­siphons point away from substrate Larvae ­free swimming with chordate characteristics ­swim, attach to substrate, lose mobility and nervous system degenerates as they mature to adult  form Ex. Oikopleura – lives in mucous hose, creates current by beating its tail (often 3­5mm) Subphylum Cephalochordata­Amphioxus ­benthic, marine, somewhat fishlike ­‘lancelets’, blade­like appearance ­can reach 5000 individuals/square meter


Buy Material

Are you sure you want to buy this material for

25 Karma

Buy Material

BOOM! Enjoy Your Free Notes!

We've added these Notes to your profile, click here to view them now.


You're already Subscribed!

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

Why people love StudySoup

Jim McGreen Ohio University

"Knowing I can count on the Elite Notetaker in my class allows me to focus on what the professor is saying instead of just scribbling notes the whole time and falling behind."

Kyle Maynard Purdue

"When you're taking detailed notes and trying to help everyone else out in the class, it really helps you learn and understand the I made $280 on my first study guide!"

Jim McGreen Ohio University

"Knowing I can count on the Elite Notetaker in my class allows me to focus on what the professor is saying instead of just scribbling notes the whole time and falling behind."

Parker Thompson 500 Startups

"It's a great way for students to improve their educational experience and it seemed like a product that everybody wants, so all the people participating are winning."

Become an Elite Notetaker and start selling your notes online!

Refund Policy


All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email


StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here:

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to

Satisfaction Guarantee: If you’re not satisfied with your subscription, you can contact us for further help. Contact must be made within 3 business days of your subscription purchase and your refund request will be subject for review.

Please Note: Refunds can never be provided more than 30 days after the initial purchase date regardless of your activity on the site.