Let u = (xi. x2 ) and v = (Yi. y2 ) be elements ofR2 . Prove that the following function defines an inner product on R2 . (u, v) = 4X1Y1 + 9X2Y2

,*: 4 t' -.vx9+ yv, :t\+ e-+q.\ tf- uq + -,t1Q,rqr\2"rpx (f t'"1x3t9'"1 ,S+ r] - L.4,ti u, # fuA,t /*,r, /"(J,,,{ ,x = 3lj *3 \q'ol Q o)'€J Y /O=Y ,t,;/'z-'r; *\ /t)tr\J- >"( 6- -x+x^d *iv -/ qv ))'( l.\* U\' L_,, Y +.rJ-,''+tUS \7 ,\ n t-|xf* z\ zX --> L'l-x1e'r7 Y 'Y4aWaWr>75 -.Lln