The state of strain at a point on the bracket has component: Ex = 150(10"'6). Ey = 200(10"'6), y..,. = - 700(10"'6). Use the strain transformation equations and determine the equivalent in plane strains on an element oriented at an angle of 8 = 60" counterclockwise from the original position. Sketch the deformed element within the x-y plane due to these strains.
l,ACrt (x()= =7f Ynr+ - r- tP) E : Y, + -.: l',Oz pt)T .;h J\. VorCu O ig.^) +N .-\z =- t 14'l, ,ltr 41 / t j4 7l tsz/13 7z-us Y@, + .".t 7 x cPM a/({{t -1Lx + 1 -: UlN"-1s :fLr* 4 ) *b. ,D-,A r ,1- I a-( *t'x,Y )x )x >q = J--tL ,r/a )nz.(G).-_ f b*,tLt bx ---tr lv '+/ n) =l -r -: EGZ c) \i # q x. 0;)d',. >-Is{xA J