Solved: A wheel changes its angular velocity with a

Chapter 9, Problem 9.73

(choose chapter or problem)

A wheel changes its angular velocity with a constant angular acceleration while rotating about a fixed axis through its center. (a) Show that the change in the magnitude of the radial acceleration during any time interval of a point on the wheel is twice the product of the angular acceleration, the angular displacement, and the perpendicular distance of the point from the axis. (b) The radial acceleration of a point on the wheel that is 0.250 m from the axis changes from to as the wheel rotates through 20.0 rad. Calculate the tangential acceleration of this point. (c) Show that the change in the wheels kinetic energy during any time interval is the product of the moment of inertia about the axis, the angular acceleration, and the angular displacement. (d) During the 20.0-rad angular displacement of part (b), the kinetic energy of the wheel increases from 20.0 J to 45.0 J. What is the moment of inertia of the wheel about the rotation axis?

Unfortunately, we don't have that question answered yet. But you can get it answered in just 5 hours by Logging in or Becoming a subscriber.

Becoming a subscriber
Or look for another answer

×

Login

Login or Sign up for access to all of our study tools and educational content!

Forgot password?
Register Now

×

Register

Sign up for access to all content on our site!

Or login if you already have an account

×

Reset password

If you have an active account we’ll send you an e-mail for password recovery

Or login if you have your password back