×
Log in to StudySoup
Get Full Access to Calculus - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Calculus - Textbook Survival Guide

Tree notch (Putnam Exam 1938, rephrased) A notch is cut in

Calculus: Early Transcendentals | 1st Edition | ISBN: 9780321570567 | Authors: William L. Briggs, Lyle Cochran, Bernard Gillett ISBN: 9780321570567 2

Solution for problem 61E Chapter 4.4

Calculus: Early Transcendentals | 1st Edition

  • Textbook Solutions
  • 2901 Step-by-step solutions solved by professors and subject experts
  • Get 24/7 help from StudySoup virtual teaching assistants
Calculus: Early Transcendentals | 1st Edition | ISBN: 9780321570567 | Authors: William L. Briggs, Lyle Cochran, Bernard Gillett

Calculus: Early Transcendentals | 1st Edition

4 5 1 330 Reviews
13
2
Problem 61E

Tree notch (Putnam Exam 1938, rephrased) A notch is cut in a cylindrical vertical tree trunk. The notch penetrates to the axis of the cylinder and is bounded by two half-planes that intersect on a diam? eter? of the tree. The angle between the two half pl? anes is ??. Prove that for a given tree and fixed? angle ??, the volume of the notch is minimized by taking the bounding planes at equal angles to the horizontal plane that also passes through D ? .

Step-by-Step Solution:

Solution Step 1 Consider a cylindrical trunk as shown below. Consider that a notch penetrates to the axis of the cylinder. This is also bounded by two half-planes that intersect on a diameter D. Now, the angle between them is. Consider that the upper part of the notch forms anglewith D and the lower part forms angle with D So, the total angle will be: + = Consider the cut length AB This can be divided as AB = AC + CB ….(1) Here AC and CB are perpendicular to the diameter D. So, you can say AC = D tan CB = D tan Put them into AB = AC + CB AB = D tan + D tan = D (tan + tan ) …(2) So, the area of the triangle is 1 area = 2 (base)(height) 1 area = 2 AB.D 1 = 2(D (tan + tan )).D 2 area = D2 (tan + tan ) If the density of the stem is, then the volume is V = (density)(area) 2 V = ( D (tan + tan ) 2 2 D V...

Step 2 of 3

Chapter 4.4, Problem 61E is Solved
Step 3 of 3

Textbook: Calculus: Early Transcendentals
Edition: 1
Author: William L. Briggs, Lyle Cochran, Bernard Gillett
ISBN: 9780321570567

The full step-by-step solution to problem: 61E from chapter: 4.4 was answered by , our top Calculus solution expert on 03/03/17, 03:45PM. Calculus: Early Transcendentals was written by and is associated to the ISBN: 9780321570567. This textbook survival guide was created for the textbook: Calculus: Early Transcendentals, edition: 1. Since the solution to 61E from 4.4 chapter was answered, more than 387 students have viewed the full step-by-step answer. The answer to “Tree notch (Putnam Exam 1938, rephrased) A notch is cut in a cylindrical vertical tree trunk. The notch penetrates to the axis of the cylinder and is bounded by two half-planes that intersect on a diam? eter? of the tree. The angle between the two half pl? anes is ??. Prove that for a given tree and fixed? angle ??, the volume of the notch is minimized by taking the bounding planes at equal angles to the horizontal plane that also passes through D ? .” is broken down into a number of easy to follow steps, and 86 words. This full solution covers the following key subjects: notch, tree, angle, planes, half. This expansive textbook survival guide covers 85 chapters, and 5218 solutions.

Unlock Textbook Solution

Enter your email below to unlock your verified solution to:

Tree notch (Putnam Exam 1938, rephrased) A notch is cut in

×
Log in to StudySoup
Get Full Access to Calculus - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Calculus - Textbook Survival Guide
×
Reset your password