×
Log in to StudySoup
Get Full Access to Calculus - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Calculus - Textbook Survival Guide

Solved: Setting up partial fraction decompositions Give

Calculus: Early Transcendentals | 1st Edition | ISBN: 9780321570567 | Authors: William L. Briggs, Lyle Cochran, Bernard Gillett ISBN: 9780321570567 2

Solution for problem 27E Chapter 7.4

Calculus: Early Transcendentals | 1st Edition

  • Textbook Solutions
  • 2901 Step-by-step solutions solved by professors and subject experts
  • Get 24/7 help from StudySoup virtual teaching assistants
Calculus: Early Transcendentals | 1st Edition | ISBN: 9780321570567 | Authors: William L. Briggs, Lyle Cochran, Bernard Gillett

Calculus: Early Transcendentals | 1st Edition

4 5 1 422 Reviews
19
0
Problem 27E

Setting up partial fraction decompositions

Give the appropriate form of the partial fraction decomposition for the following functions.

Step-by-Step Solution:
Step 1 of 3

Problem 27E

Answer;

Step-1

Proper fraction definition ; In a rational fraction  , if the degree of f(x) < the degree of g(x) , then the rational fraction is called a proper fraction.

         The sum of two proper fractions is a proper fraction.

                                  Example;

Partial fractions Depending upon the nature of factors of Denominator ;

When the denominator has non-repeated linear factors;

                             A non - repeated linear factor (x-a) of denominator corresponds a partial fraction of the form  , where A is a constant to be determined’

                 

      If g(x) = (x-a)(x-b)(x-c)............(x-n), then we assume that

                       =  ++ +...............+

Where A, B, C,............N are constants which can be determined by equating the numerator of L.H.Sto the numerator of R.H.S , and substituting x = a,b ,c ….n.

Step-2

     2) When the denominator has repeated  linear factors

                           A repeated linear factor  of denominator corresponds partial fractions of the form ;

                  =  + ++......................+

Where A, B, C,............N are constants which can be determined by equating the numerator of L.H.Sto the numerator of R.H.S , and substituting x = a, we get N.

                 Example;

Step-3

        3) When the denominator has non repeated quadratic factors;

                              To every quadratic factor (which cannot be factored into linear factors) of the form a+bx+c in the denominator , there will be a partial fraction of the form , where A and B are constants to be determined.

                 Example; = ++

Step-4

                      The given integral is ; dx………………(1)

                 Here the given integrand is of the form   , and f(x) < g(x).

          Therefore , the given fraction is a proper fraction , and the denominator has  repeated linear factors.

               Thus , from the above step the given fraction can be written as;

                                                   

                                                       = + +

                                                                          = …………..(2)

 ...

Step 2 of 3

Chapter 7.4, Problem 27E is Solved
Step 3 of 3

Textbook: Calculus: Early Transcendentals
Edition: 1
Author: William L. Briggs, Lyle Cochran, Bernard Gillett
ISBN: 9780321570567

Unlock Textbook Solution

Enter your email below to unlock your verified solution to:

Solved: Setting up partial fraction decompositions Give

×
Log in to StudySoup
Get Full Access to Calculus - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Calculus - Textbook Survival Guide
×
Reset your password