A four-coordinate complex \(\mathrm{MA}_{2} \mathrm{~B}_{2}\) is prepared and found to have two different isomers. Is it possible to determine from this information whether the complex is square planar or tetrahedral? If so, which is it?
Text Transcription:
MA_2B_2
Step 1 of 5) The most common forms of stereoisomerism are geometric isomerism and optical isomerism. Geometric isomers differ from one another in the relative locations of donor atoms in the coordination sphere; the most common being cis and trans isomers. Geometric isomers differ from one another in their chemical and physical properties. Optical isomers are nonsuperimposable mirror images of each other. Optical isomers, or enantiomers, are chiral, meaning that they have a specific “handedness” and differ only in the presence of a chiral environment. Optical isomers can be distinguished from one another by their interactions with plane-polarized light; solutions of one isomer rotate the plane of polarization to the right (dextrorotatory), and solutions of its mirror image rotate the plane to the left (levorotatory). Chiral molecules, therefore, are optically active. A 50950 mixture of two optical isomers does not rotate plane-polarized light and is said to be racemic.