(a) Oxygen has a molar mass of What is the average

Chapter 18, Problem 18.37

(choose chapter or problem)

Get Unlimited Answers
QUESTION:

(a) Oxygen has a molar mass of What is the average translational kinetic energy of an oxygen molecule at a temperature of 300 K? (b) What is the average value of the square of its speed? (c) What is the root-mean-square speed? (d) What is the momentum of an oxygen molecule traveling at this speed? (e) Suppose an oxygen molecule traveling at this speed bounces back and forth between opposite sides of a cubical vessel 0.10 m on a side. What is the average force the molecule exerts on one of the walls of the container? (Assume that the molecules velocity is perpendicular to the two sides that it strikes.) (f ) What is the average force per unit area? (g) How many oxygen molecules traveling at this speed are necessary to produce an average pressure of 1 atm? (h) Compute the number of oxygen molecules that are actually contained in a vessel of this size at 300 K and atmospheric pressure. (i) Your answer for part (h) should be three times as large as the answer for part (g). Where does this discrepancy arise?

Questions & Answers

QUESTION:

(a) Oxygen has a molar mass of What is the average translational kinetic energy of an oxygen molecule at a temperature of 300 K? (b) What is the average value of the square of its speed? (c) What is the root-mean-square speed? (d) What is the momentum of an oxygen molecule traveling at this speed? (e) Suppose an oxygen molecule traveling at this speed bounces back and forth between opposite sides of a cubical vessel 0.10 m on a side. What is the average force the molecule exerts on one of the walls of the container? (Assume that the molecules velocity is perpendicular to the two sides that it strikes.) (f ) What is the average force per unit area? (g) How many oxygen molecules traveling at this speed are necessary to produce an average pressure of 1 atm? (h) Compute the number of oxygen molecules that are actually contained in a vessel of this size at 300 K and atmospheric pressure. (i) Your answer for part (h) should be three times as large as the answer for part (g). Where does this discrepancy arise?

ANSWER:

Step 1 of 9

Given, molar mass of oxygen

Temperature

Add to cart


Study Tools You Might Need

Not The Solution You Need? Search for Your Answer Here:

×

Login

Login or Sign up for access to all of our study tools and educational content!

Forgot password?
Register Now

×

Register

Sign up for access to all content on our site!

Or login if you already have an account

×

Reset password

If you have an active account we’ll send you an e-mail for password recovery

Or login if you have your password back