Make up to $500 this semester by taking notes for StudySoup as an Elite Notetaker Apply Now

Trajectory high point A stone is launched vertically

Calculus: Early Transcendentals | 1st Edition | ISBN: 9780321570567 | Authors: William L. Briggs, Lyle Cochran, Bernard Gillett

Problem 43E Chapter 4.1

Calculus: Early Transcendentals | 1st Edition

  • 2901 Step-by-step solutions solved by professors and subject experts
  • Get 24/7 help from StudySoup virtual teaching assistants
Calculus: Early Transcendentals | 1st Edition | ISBN: 9780321570567 | Authors: William L. Briggs, Lyle Cochran, Bernard Gillett

Calculus: Early Transcendentals | 1st Edition

4 5 0 263 Reviews
20
1
Problem 43E

Trajectory high point A stone is launched vertically upward from a cliff 192 ft above the ground at a speed of 64 ft/s. Its height above the ground ?t seconds after the launch is g?iven by? ?s =?? 6?t2+ 64?t + 192? for ? ? 6. When does the stone reach its maximum height?

Step-by-Step Solution:
Step 1 of 3

STEP_BY_STEP SOLUTION Step-1 Let f be a continuous function defined on an open interval containing a number ā€˜cā€™.The number ā€˜cā€™ is critical value ( or critical number ). If f (c) 1 1 = 0 or f (c) is undefined. A critical point on that graph of f has the form (c,f(c)). Step-2 When an output value of a function is a maximum or a minimum over the entire domain of the function, the value is called the absolute maximum or the absolute minimum. Let f be a function with domain D and let c be a fixed constant in D . Then the output value f ) is the 1. Absolute maximum value of f on D if and only if f(x) f(c) , for all x in D. 2. Absolute minimum value of f on D if and only if f(c) f(x) , for all x in D. Step_3 Given is; A stone is launched vertically upward from the cliff 192 ft above the ground at a speed of 64 ft/s , and also given that its height above the ground t seconds after the launch is given by 2 S = -16t +64t+192 for 0 t 6. Now , we have to find out the value of stone reach its maximum height . For that we have to evaluate the function at critical points.so, the critical points satisfies the equation . 2 Given function is; S = -16t +64t+192 . For the critical points we have to differentiate the function with respect to t .[ Since from the step-1] d d 2 dt(s) = dt( -16t +64t+192 ) s = d ( -16t ) + d...

Step 2 of 3

Chapter 4.1, Problem 43E is Solved
Step 3 of 3

Textbook: Calculus: Early Transcendentals
Edition: 1
Author: William L. Briggs, Lyle Cochran, Bernard Gillett
ISBN: 9780321570567

×
Log in to StudySoup
Get Full Access to Calculus: Early Transcendentals - 1 Edition - Chapter 4.1 - Problem 43e

Forgot password? Reset password here

Join StudySoup for FREE
Get Full Access to Calculus: Early Transcendentals - 1 Edition - Chapter 4.1 - Problem 43e
Join with Email
Already have an account? Login here
Reset your password

I don't want to reset my password

Need help? Contact support

Need an Account? Is not associated with an account
Sign up
We're here to help

Having trouble accessing your account? Let us help you, contact support at +1(510) 944-1054 or support@studysoup.com

Got it, thanks!
Password Reset Request Sent An email has been sent to the email address associated to your account. Follow the link in the email to reset your password. If you're having trouble finding our email please check your spam folder
Got it, thanks!
Already have an Account? Is already in use
Log in
Incorrect Password The password used to log in with this account is incorrect
Try Again

Forgot password? Reset it here