# Graphing rational functions Use the guidelines of this ## Problem 16E Chapter 4.3

Calculus: Early Transcendentals | 1st Edition

• 2901 Step-by-step solutions solved by professors and subject experts
• Get 24/7 help from StudySoup virtual teaching assistants Calculus: Early Transcendentals | 1st Edition

4 5 0 390 Reviews
22
0
Problem 16E

Graphing rational functions ?Use the guidelines of this section to make a complete graph of f.

Step-by-Step Solution:
Step 1 of 3

Solution: Step1 Given function is f(x)= x +12 2x+1 The zero of the denominator is x=-0.5 so, the domain is { x; x/ -0.5} This function consists of an even function divided by an odd function. The product of even and odd function is odd. Therefore, the graph is symmetric about the origin. Step2 Differentiate the given equation to find f’(x) we get, f’(x)= (2x)/(2x+1) - (2(x^2+12))/(2x+1)^2 = (2x(2x+1)-2(x^2+12))/(2x+1)^2 = (4x^2+2x-2x^2-24)/(2x+1)^2 = (2x^2+2x-24)/(2x+1)^2 = (2(x^2+x-12))/(2x+1)^2 Again differentiate f’(x) to find f’’(x) we get, f’’(x)=(4x+2)/(2x+1)^2 - (4(2x^2+2x-24))/(2x+1)^3 = ((4x+2)(2x+1)-8x^2-8x+96)/(2x+1)^3 = (8x^2+4x+4x+2-8x^2-8x+96)/(2x+1)^3 = 98/(2x+1)^3 Step3 To get extreme values we have to use f’(x)=0 => (2(x^2+x-12))/(2x+1)^2 =0 =>2(x^2+x-12)=0 => x^2+x-12=0 =>x^2+4x-3x-12=0 => x(x+4)-3(x+4)=0 =>(x-3)(x+4)=0 =>x=3,-4 Critical points...

Step 2 of 3

Step 3 of 3

##### ISBN: 9780321570567

×
Get Full Access to Calculus: Early Transcendentals - 1 Edition - Chapter 4.3 - Problem 16e

Get Full Access to Calculus: Early Transcendentals - 1 Edition - Chapter 4.3 - Problem 16e

I don't want to reset my password

Need help? Contact support

Need an Account? Is not associated with an account
We're here to help

Having trouble accessing your account? Let us help you, contact support at +1(510) 944-1054 or support@studysoup.com

Password Reset Request Sent An email has been sent to the email address associated to your account. Follow the link in the email to reset your password. If you're having trouble finding our email please check your spam folder
Already have an Account? Is already in use