×
×

# Graphing rational functions Use the guidelines of this ISBN: 9780321570567 2

## Solution for problem 16E Chapter 4.3

Calculus: Early Transcendentals | 1st Edition

• Textbook Solutions
• 2901 Step-by-step solutions solved by professors and subject experts
• Get 24/7 help from StudySoup virtual teaching assistants Calculus: Early Transcendentals | 1st Edition

4 5 0 325 Reviews
22
0
Problem 16E

Graphing rational functions ?Use the guidelines of this section to make a complete graph of f.

Step-by-Step Solution:
Step 1 of 3

Solution: Step1 Given function is f(x)= x +12 2x+1 The zero of the denominator is x=-0.5 so, the domain is { x; x/ -0.5} This function consists of an even function divided by an odd function. The product of even and odd function is odd. Therefore, the graph is symmetric about the origin. Step2 Differentiate the given equation to find f’(x) we get, f’(x)= (2x)/(2x+1) - (2(x^2+12))/(2x+1)^2 = (2x(2x+1)-2(x^2+12))/(2x+1)^2 = (4x^2+2x-2x^2-24)/(2x+1)^2 = (2x^2+2x-24)/(2x+1)^2 = (2(x^2+x-12))/(2x+1)^2 Again differentiate f’(x) to find f’’(x) we get, f’’(x)=(4x+2)/(2x+1)^2 - (4(2x^2+2x-24))/(2x+1)^3 = ((4x+2)(2x+1)-8x^2-8x+96)/(2x+1)^3 = (8x^2+4x+4x+2-8x^2-8x+96)/(2x+1)^3 = 98/(2x+1)^3 Step3 To get extreme values we have to use f’(x)=0 => (2(x^2+x-12))/(2x+1)^2 =0 =>2(x^2+x-12)=0 => x^2+x-12=0 =>x^2+4x-3x-12=0 => x(x+4)-3(x+4)=0 =>(x-3)(x+4)=0 =>x=3,-4 Critical points...

Step 2 of 3

Step 3 of 3

##### ISBN: 9780321570567

Unlock Textbook Solution