The vertices of a tetrahedron correspond to four alternating corners of a cube. By using analytical geometry, demonstrate that the angle made by connecting two of the vertices to a point at the center of the cube is 109.5°, the characteristic angle for tetrahedral molecules.

# The vertices of a tetrahedron correspond to four

## Solution for problem 91AE Chapter 9

Chemistry: The Central Science | 12th Edition

- Textbook Solutions
- 2901 Step-by-step solutions solved by professors and subject experts
- Get 24/7 help from StudySoup virtual teaching assistants

Chemistry: The Central Science | 12th Edition

Get Full SolutionsThe full step-by-step solution to problem: 91AE from chapter: 9 was answered by , our top Chemistry solution expert on 04/03/17, 07:58AM. This full solution covers the following key subjects: vertices, Cube, angle, demonstrate, characteristic. This expansive textbook survival guide covers 49 chapters, and 5471 solutions. The answer to “The vertices of a tetrahedron correspond to four alternating corners of a cube. By using analytical geometry, demonstrate that the angle made by connecting two of the vertices to a point at the center of the cube is 109.5°, the characteristic angle for tetrahedral molecules.” is broken down into a number of easy to follow steps, and 45 words. This textbook survival guide was created for the textbook: Chemistry: The Central Science, edition: 12. Since the solution to 91AE from 9 chapter was answered, more than 304 students have viewed the full step-by-step answer. Chemistry: The Central Science was written by and is associated to the ISBN: 9780321696724.

#### Other solutions

#### People also purchased

#### Related chapters

Enter your email below to unlock your **verified solution** to:

The vertices of a tetrahedron correspond to four