×
Get Full Access to University Physics - 13 Edition - Chapter 10 - Problem 85p
Get Full Access to University Physics - 13 Edition - Chapter 10 - Problem 85p

×

# In a lab experiment you let a uniform ball roll down a

ISBN: 9780321675460 31

## Solution for problem 85P Chapter 10

University Physics | 13th Edition

• Textbook Solutions
• 2901 Step-by-step solutions solved by professors and subject experts
• Get 24/7 help from StudySoup virtual teaching assistants

University Physics | 13th Edition

4 5 1 268 Reviews
13
0
Problem 85P

In a lab experiment you let a uniform ball roll down a curved track. The ball starts from rest and rolls without slipping. While on the track, the ball descends a vertical distance ?h?. The lower end of the track is horizontal and extends over the edge of the lab table; the ball leaves the track traveling horizontally. While free-falling after leaving the track, the ball moves a horizontal distance ?x? and a vertical distance ?y?. (a) Calculate ?x? in terms of ?h? and ?y?, ignoring the work done by friction. (b) Would the answer to part (a) be any different on the moon? (c) Although you do the experiment very carefully, your measured value of ?x? is consistently a bit smaller than the value calculated in part (a). Why? (d) What would ?x? be for the same ?h? and ?y? as in part (a) if you let a silver dollar roll down the track? You can ignore the work done by friction.

Step-by-Step Solution:

Solution 1 Introduction First we have to calculate the horizontal velocity of the ball by using the conservation of energy. Then we have to calculate the time taken for free fall for y distance. Then we can calculate the horizontal distance x in from the horizontal velocity. (a) Step 1 Suppose the mass of the ball is m The potential energy at the height h is given by U = mgh Now let us consider that the ball is coming with velocity v at the bottom of the track. Hence the kinetic energy of the ball is given by Now, since the ball is rolling without slipping, we can write that the angular velocity is given by Also for the moment of inertia for the ball is Hence the kinetic energy becomes Now equating the final kinetic energy with the initial potential energy in the track we have Now after the table, this will be the x-component of the velocity.

Step 2 of 6

Step 3 of 6

##### ISBN: 9780321675460

This full solution covers the following key subjects: track, ball, distance, part, let. This expansive textbook survival guide covers 26 chapters, and 2929 solutions. Since the solution to 85P from 10 chapter was answered, more than 396 students have viewed the full step-by-step answer. The answer to “In a lab experiment you let a uniform ball roll down a curved track. The ball starts from rest and rolls without slipping. While on the track, the ball descends a vertical distance ?h?. The lower end of the track is horizontal and extends over the edge of the lab table; the ball leaves the track traveling horizontally. While free-falling after leaving the track, the ball moves a horizontal distance ?x? and a vertical distance ?y?. (a) Calculate ?x? in terms of ?h? and ?y?, ignoring the work done by friction. (b) Would the answer to part (a) be any different on the moon? (c) Although you do the experiment very carefully, your measured value of ?x? is consistently a bit smaller than the value calculated in part (a). Why? (d) What would ?x? be for the same ?h? and ?y? as in part (a) if you let a silver dollar roll down the track? You can ignore the work done by friction.” is broken down into a number of easy to follow steps, and 163 words. This textbook survival guide was created for the textbook: University Physics, edition: 13. University Physics was written by and is associated to the ISBN: 9780321675460. The full step-by-step solution to problem: 85P from chapter: 10 was answered by , our top Physics solution expert on 05/06/17, 06:07PM.

#### Related chapters

Unlock Textbook Solution