Solution Found!

A child rolls a 0.600-kg basketball up a long ramp. The

Chapter 4, Problem 84P

(choose chapter or problem)

Get Unlimited Answers
QUESTION:

A child rolls a 0.600-kg basketball up a long ramp. The basketball can be considered a thin-walled, hollow sphere. When the child releases the basketball at the bottom of the ramp, it has a speed of 8.0 m/s. When the ball returns to her after rolling up the ramp and then rolling back down, it has a speed of 4.0 m/s. Assume the work done by friction on the basketball is the same when the ball moves up or down the ramp and that the basketball rolls without slipping. Find the maximum vertical height increase of the ball as it rolls up the ramp.

Questions & Answers

QUESTION:

A child rolls a 0.600-kg basketball up a long ramp. The basketball can be considered a thin-walled, hollow sphere. When the child releases the basketball at the bottom of the ramp, it has a speed of 8.0 m/s. When the ball returns to her after rolling up the ramp and then rolling back down, it has a speed of 4.0 m/s. Assume the work done by friction on the basketball is the same when the ball moves up or down the ramp and that the basketball rolls without slipping. Find the maximum vertical height increase of the ball as it rolls up the ramp.

ANSWER:

Solution 84P Step 1: Initially, the energy possessed by the ball was purely Kinetic. Once it climbs the ramp, the kinetic energy will be converted to potential energy and some amount of work done due to frictional force. So, we can write, KE initialW fPE top We know that, KE = ½ mv + ½ I 2 initial Where, m - mass of the basket ball v - initial velocity of the ball I - moment of inertia of the ball - Angular velocity of the ball 2 Where, ½ mv = translational kinetic energy 2 ½ I = Rotational kinetic energy of the ball We know that, I = mr for the basketball since, it is considered as a hollow sphere. Angular velocity of the ball, = v/r Where, r - radius of the ball 2 2 2 2 Then, ½ I = ½ × × mr × (v/r) = mv 2 2 2 Therefore, KE initial mv + mv = mv Therefore, mv = mgh - W --------------------- (1) f Where, g - acceleration due to gravity h - maximum vertical height of the ball in the ramp

Add to cart


Study Tools You Might Need

Not The Solution You Need? Search for Your Answer Here:

×

Login

Login or Sign up for access to all of our study tools and educational content!

Forgot password?
Register Now

×

Register

Sign up for access to all content on our site!

Or login if you already have an account

×

Reset password

If you have an active account we’ll send you an e-mail for password recovery

Or login if you have your password back