×
Get Full Access to Probability And Statistics For Engineers And The Scientists - 9 Edition - Chapter 2 - Problem 105e
Get Full Access to Probability And Statistics For Engineers And The Scientists - 9 Edition - Chapter 2 - Problem 105e

×

# Disregarding the possibility of a February 29 birthday, ISBN: 9780321629111 32

## Solution for problem 105E Chapter 2

Probability and Statistics for Engineers and the Scientists | 9th Edition

• Textbook Solutions
• 2901 Step-by-step solutions solved by professors and subject experts
• Get 24/7 help from StudySoup virtual teaching assistants Probability and Statistics for Engineers and the Scientists | 9th Edition

4 5 1 361 Reviews
30
3
Problem 105E

Disregarding the possibility of a February 29 birthday, suppose a randomly selected individual is equally likely to have been born on any one of the other 365 days. a. If ten people are randomly selected, what is the probability that all have different birthdays? That at least two have the same birthday? b. With ?k ?replacing ten in part (a), what is the smallest ?k ?for which there is at least a 50-50 chance that two or more people will have the same birthday? c. If ten people are randomly selected, what is the probability that either at least two have the same birthday or at least two have the same last three digits of their Social Security numbers? [? ote: T he article “Methods for Studying Coincidences” (F. Mosteller and P. Diaconis, ?J. Amer. Stat. Assoc., ?1989: 853–861) discusses problems of this type.]

Step-by-Step Solution:

Answer Step 1 of 3 10 a) There are 365 possible list of birthdays P(all different)=P 10, 36536510 =0.883 P(at least two of them same)=1-0.883=0.117

Step 2 of 3

Step 3 of 3

##### ISBN: 9780321629111

Unlock Textbook Solution