Let p1 denote the probability that any particular code symbol is erroneously transmitted through a communication system. Assume that on different symbols, errors occur independently of one another. Suppose also that with probability p2 an erroneous symbol is corrected upon receipt. Let X denote the number of correct symbols in a message block consisting of n symbols (after the correction process has ended). What is the probability distribution of X?

Weekly Notes #9 , March 28,2016 Monday onlyfortineas ex)Given : Learned : nEkPx.yfx.ytPK-X.y-yypx.y-covKAtaPx.yEHFindiaorgghioEuJxdyieEItoalxPxkD.ECxkiex.Jx2gValidforch.314nowrrebtion1uebtioshipAPylyl.Etp-eiy.Jywhenp-obCovk.ylEEECx-uxKy-nD2szh5formalHECxylthxjuydqinitionlsnathexpoessioneDGiveniwliMationslipy-axtbta-iveloesntchagextdirectionFindi-a-YoppositedirectionsMy.Jy.covG.yhpxyx.x@EGHuy.aanHggFoeknubOVar4H22y-a2jx2-Jy-1a4yeuarpoisae.bfysaTsnowmebtichc0covCx.y )=e{(×-µ×)(y-µy )} =E{k-µ×)( axtb - aµx -b)} ,e*÷p5¥ =E{(×-µ×Xxµx)a} +