A hawser is wrapped around a fixed capstan to secure a

Chapter 8, Problem 8-85

(choose chapter or problem)

Get Unlimited Answers
QUESTION:

A “hawser” is wrapped around a fixed “capstan” to secure a ship for docking. If the tension in the rope, caused by the ship, is 1500 lb, determine the least number of complete turns the rope must be rapped around the capstan in order to prevent slipping of the rope. The greatest horizontal force that a longshoreman can exert on the rope is 50 lb. The coefficient of static friction is \(\mu_s = 0.3\).

Questions & Answers

QUESTION:

A “hawser” is wrapped around a fixed “capstan” to secure a ship for docking. If the tension in the rope, caused by the ship, is 1500 lb, determine the least number of complete turns the rope must be rapped around the capstan in order to prevent slipping of the rope. The greatest horizontal force that a longshoreman can exert on the rope is 50 lb. The coefficient of static friction is \(\mu_s = 0.3\).

ANSWER:


Using the equation Fn= ?Fn, where Fn is the normal force and ? is the coefficient of static friction, we can find the minimum value of the normal force

Add to cart


Study Tools You Might Need

Not The Solution You Need? Search for Your Answer Here:

×

Login

Login or Sign up for access to all of our study tools and educational content!

Forgot password?
Register Now

×

Register

Sign up for access to all content on our site!

Or login if you already have an account

×

Reset password

If you have an active account we’ll send you an e-mail for password recovery

Or login if you have your password back