×
Log in to StudySoup
Get Full Access to Calculus - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Calculus - Textbook Survival Guide

An area function Let A(a)denote the area of the region

Calculus: Early Transcendentals | 1st Edition | ISBN: 9780321570567 | Authors: William L. Briggs, Lyle Cochran, Bernard Gillett ISBN: 9780321570567 2

Solution for problem 58E Chapter 7.7

Calculus: Early Transcendentals | 1st Edition

  • Textbook Solutions
  • 2901 Step-by-step solutions solved by professors and subject experts
  • Get 24/7 help from StudySoup virtual teaching assistants
Calculus: Early Transcendentals | 1st Edition | ISBN: 9780321570567 | Authors: William L. Briggs, Lyle Cochran, Bernard Gillett

Calculus: Early Transcendentals | 1st Edition

4 5 0 339 Reviews
20
5
Problem 58E

An area function Let A(a)denote the area of the region bounded by y = e−ax and the x-axis on the interval [0, ∞). Graph the function A(a)for 0<a<∞. Describe how the area of the region decreases as the parameter a increases.

Step-by-Step Solution:
Step 1 of 3

Problem 58E

An area function Let A(a)denote the area of the region bounded by y = and the x-axis on the interval [0, ∞). Graph the function A(a)for 0<a<∞. Describe how the area of the region decreases as the parameter a increases.

Answer;

   

       Step-1;

           

              Let A(a) denote the area of the region bounded by y = and the x-axis on the interval [0, ∞).

             Now , we have to  sketch the  Graph  of the function A(a)for 0<a<∞ , and  find out the area between the curve  y = and the x-axis on the interval [0, ∞).

Step-2 ;

              Now ,we have to  sketch  the graph of the function A(a)  for 0<a<∞ .Here a lies between 0 to , so, the graph of  varies  for different values of  ‘a’.

            If a = 1 , then y = graph is ;

                                                   

     If a = 2, x is negative value , then y = graph is ;

                                                                               

   

  Step-3;

            Now , we have  to  find out the area between the curve  y = and the x-axis on the interval [0, ∞).

      Given , a lies between  [0, infinity), the graph of e−ax will always be above the x -axis(i.e , y =0). So the setup of the area integral is ∫(e−ax − 0)dx from 0 to ∞.

                     

                           ………(1)

                         Consider ,

                                        Put -ax = p , then -a dx = dp

                                                                        dx = dp

                               

                              Therefore,  = (dp)

                                                              = dp

                                               

                                             ...

Step 2 of 3

Chapter 7.7, Problem 58E is Solved
Step 3 of 3

Textbook: Calculus: Early Transcendentals
Edition: 1
Author: William L. Briggs, Lyle Cochran, Bernard Gillett
ISBN: 9780321570567

Unlock Textbook Solution

Enter your email below to unlock your verified solution to:

An area function Let A(a)denote the area of the region

×
Log in to StudySoup
Get Full Access to Calculus - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Calculus - Textbook Survival Guide
×
Reset your password