Convert each of the integers in Exercise 6 from a binary expansion to a hexadecimal expansion.

(1111 0111)2(1010 1010 1010)2(111 0111 0111 0111)2(101 0101 0101 0101)2

Step 1 In This problem we have to Convert Each of the given Binary Expansion to

Hexadecimal Expansion .

Step 2 Binary code follows 8-4-2-1, Where 8,4,2 and 1 are the values of each bit

BINARY ( 8-4-2-1) |
HEXADECIMAL |

0000 |
0 |

0001 |
1 |

0010 |
2 |

0011 |
3 |

0100 |
4 |

0101 |
5 |

0110 |
6 |

0111 |
7 |

1000 |
8 |

1001 |
9 |

1010 |
A |

1011 |
B |

1100 |
C |

1101 |
D |

1110 |
E |

1111 |
F |

Step 3 Taking each binary expansion and solving them seperately

Given binary expansion = (1111 0111)2From the least significant bit(LSB) from the last bit, making a group of 4 bits,we get

1111 0111

Step 4 From the table in Step-2 the corresponding hexadecimal equivalent of binary numbers is

Obtained.

1111 - F

0111 - 7

Step 5 The Hexadecimal expansion of (1111 0111)2 is ( F7)16

Step 6 Similarly repeating for problem b) , c) and d) respectively we get

b) (1010 1010 1010)2

1010 1010 1010 (grouping 4 bits)

Step 7 From the table in Step-2 we get

1010 - A

1010 - A

1010 - A