×
Get Full Access to Statistics For Engineers And Scientists - 4 Edition - Chapter 3 - Problem 22se
Get Full Access to Statistics For Engineers And Scientists - 4 Edition - Chapter 3 - Problem 22se

×

# If X is an unbiased measurement of a true value ?X, and ISBN: 9780073401331 38

## Solution for problem 22SE Chapter 3

Statistics for Engineers and Scientists | 4th Edition

• Textbook Solutions
• 2901 Step-by-step solutions solved by professors and subject experts
• Get 24/7 help from StudySoup virtual teaching assistants Statistics for Engineers and Scientists | 4th Edition

4 5 1 308 Reviews
30
3
Problem 22SE

If $$X$$ is an unbiased measurement of a true value $$\mu_{X}$$, and U(X) is a nonlinear function of $$X$$, then in most cases $$U$$ is a biased estimate of the true value $$U\left(\mu_{X}\right)$$. In most cases this bias is ignored. If it is important to reduce this bias, however, a bias-corrected estimate is $$U(X)-(1 / 2)\left(d^{2} U / d X^{2}\right) \sigma_{X}^{2}$$. In general the bias-corrected estimate is not unbiased, but has a smaller bias than U(X).

Assume that the radius of a circle is measured to be $$r=3.0\pm0.1\mathrm{\ cm}$$.

a. Estimate the area $$A$$, and find the uncertainty in the estimate, without bias correction.

b. Compute the bias-corrected estimate of $$A$$.

c. Compare the difference between the bias-corrected and non-bias-corrected estimates to the uncertainty in the non-bias-corrected estimate. Is bias correction important in this case? Explain.

Equation Transcription:       Text Transcription:

X

mu_X

U

U(mu_X)

U(X)-(1/2)(d^2 U / dX^2) sigma_X ^2

r = 3.0 pm 0.1 cm

A

Step-by-Step Solution:

Solution :

Step 1 of 3:

Given X is an unbiased measurement of a true value .

Then a bias-corrected estimate is .

Where U(X) is a nonlinear function of X.

We assume that the radius of a circle is measured to be .

Our goal is :

a). We need to estimate the area and the uncertainty in the estimate bias correction.

b). We need to compute the bias-corrected estimate of A.

e). We need to find is bias correction important in this case? Explain.

a).

Now we have to estimate the area and the uncertainty in the estimate bias correction.

The area of the circle is Where and r=3.

Then   Therefore the area of the circle is 28.26 .

The uncertainty in the estimate bias correction is Where A= Here we are differentiating with respect to r.  and      Therefore the uncertainty in the estimate bias correction is 1.8840.

Step 2 of 3

Step 3 of 3

##### ISBN: 9780073401331

Unlock Textbook Solution